CLIP_as_RNN / data /refcoco.py
Kevin Sun
init commit
6cd90b7
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RefCOCO dataset."""
# Adapted from
# https://github.com/yz93/LAVT-RIS/blob/main/data/dataset_refer_bert.py
# pylint: disable=all
import itertools
import json
import os
import os.path as osp
import pickle as pickle
import sys
import time
# pylint: disable=g-importing-member
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from pycocotools import mask
import skimage.io as io
import torch
import torch.utils.data as data
from torchvision import transforms
class REFER:
"""RefCOCO dataset."""
def __init__(self, data_root, dataset='refcoco', splitBy='unc', split='val'):
# provide data_root folder which contains refclef, refcoco, refcoco+ and refcocog
# also provide dataset name and splitBy information
# e.g., dataset = 'refcoco', splitBy = 'unc'
print('loading dataset %s into memory...' % dataset)
if dataset == 'refcocog':
print('Split by {}!'.format(splitBy))
self.ROOT_DIR = osp.abspath(osp.dirname(__file__))
self.DATA_DIR = osp.join(data_root, dataset)
if dataset in ['refcoco', 'refcoco+', 'refcocog']:
self.IMAGE_DIR = osp.join(data_root, 'images/mscoco/images/train2014')
elif dataset == 'refclef':
self.IMAGE_DIR = osp.join(data_root, 'images/saiapr_tc-12')
else:
print('No refer dataset is called [%s]' % dataset)
sys.exit()
# load refs from data/dataset/refs(dataset).json
tic = time.time()
ref_file = osp.join(self.DATA_DIR, 'refs(' + splitBy + ').p')
self.data = {}
self.data['dataset'] = dataset
# f = open(ref_file, 'r')
self.data['refs'] = pickle.load(open(ref_file, 'rb'))
# load annotations from data/dataset/instances.json
instances_file = osp.join(self.DATA_DIR, 'instances.json')
instances = json.load(open(instances_file, 'r'))
self.data['images'] = instances['images']
self.data['annotations'] = instances['annotations']
self.data['categories'] = instances['categories']
# create index
self.createIndex()
self.split = split
print('DONE (t=%.2fs)' % (time.time() - tic))
def createIndex(self):
# create sets of mapping
# 1) Refs: {ref_id: ref}
# 2) Anns: {ann_id: ann}
# 3) Imgs: {image_id: image}
# 4) Cats: {category_id: category_name}
# 5) Sents: {sent_id: sent}
# 6) imgToRefs: {image_id: refs}
# 7) imgToAnns: {image_id: anns}
# 8) refToAnn: {ref_id: ann}
# 9) annToRef: {ann_id: ref}
# 10) catToRefs: {category_id: refs}
# 11) sentToRef: {sent_id: ref}
# 12) sentToTokens: {sent_id: tokens}
print('creating index...')
# fetch info from instances
Anns, Imgs, Cats, imgToAnns = {}, {}, {}, {}
for ann in self.data['annotations']:
Anns[ann['id']] = ann
imgToAnns[ann['image_id']] = imgToAnns.get(ann['image_id'], []) + [ann]
for img in self.data['images']:
Imgs[img['id']] = img
for cat in self.data['categories']:
Cats[cat['id']] = cat['name']
# fetch info from refs
Refs, imgToRefs, refToAnn, annToRef, catToRefs = {}, {}, {}, {}, {}
Sents, sentToRef, sentToTokens = {}, {}, {}
for ref in self.data['refs']:
# ids
ref_id = ref['ref_id']
ann_id = ref['ann_id']
category_id = ref['category_id']
image_id = ref['image_id']
# add mapping related to ref
Refs[ref_id] = ref
imgToRefs[image_id] = imgToRefs.get(image_id, []) + [ref]
catToRefs[category_id] = catToRefs.get(category_id, []) + [ref]
refToAnn[ref_id] = Anns[ann_id]
annToRef[ann_id] = ref
# add mapping of sent
for sent in ref['sentences']:
Sents[sent['sent_id']] = sent
sentToRef[sent['sent_id']] = ref
sentToTokens[sent['sent_id']] = sent['tokens']
# create class members
self.Refs = Refs
self.Anns = Anns
self.Imgs = Imgs
self.Cats = Cats
self.Sents = Sents
self.imgToRefs = imgToRefs
self.imgToAnns = imgToAnns
self.refToAnn = refToAnn
self.annToRef = annToRef
self.catToRefs = catToRefs
self.sentToRef = sentToRef
self.sentToTokens = sentToTokens
print('index created.')
def getRefIds(self, image_ids=[], cat_ids=[], ref_ids=[], split=''):
image_ids = image_ids if type(image_ids) == list else [image_ids]
cat_ids = cat_ids if type(cat_ids) == list else [cat_ids]
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]
if len(image_ids) == len(cat_ids) == len(ref_ids) == len(split) == 0:
refs = self.data['refs']
else:
if not len(image_ids) == 0:
refs = [self.imgToRefs[image_id] for image_id in image_ids]
ref_ids = []
for img_ref in refs:
ref_ids.extend([ref['ref_id'] for ref in img_ref])
return ref_ids
else:
refs = self.data['refs']
if not len(cat_ids) == 0:
refs = [ref for ref in refs if ref['category_id'] in cat_ids]
if not len(ref_ids) == 0:
refs = [ref for ref in refs if ref['ref_id'] in ref_ids]
if not len(split) == 0:
if split in ['testA', 'testB', 'testC']:
# we also consider testAB, testBC, ...
refs = [ref for ref in refs if split[-1] in ref['split']]
elif split in ['testAB', 'testBC', 'testAC']:
# rarely used I guess...
refs = [ref for ref in refs if ref['split'] == split]
elif split == 'test':
refs = [ref for ref in refs if 'test' in ref['split']]
elif split == 'train' or split == 'val':
refs = [ref for ref in refs if ref['split'] == split]
else:
print('No such split [%s]' % split)
sys.exit()
ref_ids = [ref['ref_id'] for ref in refs]
return ref_ids
def getAnnIds(self, image_ids=[], cat_ids=[], ref_ids=[]):
image_ids = image_ids if type(image_ids) == list else [image_ids]
cat_ids = cat_ids if type(cat_ids) == list else [cat_ids]
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]
if len(image_ids) == len(cat_ids) == len(ref_ids) == 0:
ann_ids = [ann['id'] for ann in self.data['annotations']]
else:
if not len(image_ids) == 0:
lists = [
self.imgToAnns[image_id]
for image_id in image_ids
if image_id in self.imgToAnns
] # list of [anns]
anns = list(itertools.chain.from_iterable(lists))
else:
anns = self.data['annotations']
if not len(cat_ids) == 0:
anns = [ann for ann in anns if ann['category_id'] in cat_ids]
ann_ids = [ann['id'] for ann in anns]
# if not len(ref_ids) == 0:
# ids = set(ann_ids).intersection(
# set([self.Refs[ref_id]['ann_id'] for ref_id in ref_ids])
# )
return ann_ids
def getImgIds(self, ref_ids=[]):
ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]
if not len(ref_ids) == 0:
image_ids = list(
set([self.Refs[ref_id]['image_id'] for ref_id in ref_ids])
)
else:
image_ids = self.Imgs.keys()
return image_ids
def getCatIds(self):
return self.Cats.keys()
def loadRefs(self, ref_ids=[]):
if type(ref_ids) == list:
return [self.Refs[ref_id] for ref_id in ref_ids]
elif type(ref_ids) == int:
return [self.Refs[ref_ids]]
def loadAnns(self, ann_ids=[]):
if type(ann_ids) == list:
return [self.Anns[ann_id] for ann_id in ann_ids]
elif type(ann_ids) == int or type(ann_ids) == unicode:
return [self.Anns[ann_ids]]
def loadImgs(self, image_ids=[]):
if type(image_ids) == list:
return [self.Imgs[image_id] for image_id in image_ids]
elif type(image_ids) == int:
return [self.Imgs[image_ids]]
def loadCats(self, cat_ids=[]):
if type(cat_ids) == list:
return [self.Cats[cat_id] for cat_id in cat_ids]
elif type(cat_ids) == int:
return [self.Cats[cat_ids]]
def getRefBox(self, ref_id):
# ref = self.Refs[ref_id]
ann = self.refToAnn[ref_id]
return ann['bbox'] # [x, y, w, h]
def showRef(self, ref, seg_box='seg'):
ax = plt.gca()
# show image
image = self.Imgs[ref['image_id']]
I = io.imread(osp.join(self.IMAGE_DIR, image['file_name']))
ax.imshow(I)
# show refer expression
for sid, sent in enumerate(ref['sentences']):
print('%s. %s' % (sid + 1, sent['sent']))
# show segmentations
if seg_box == 'seg':
ann_id = ref['ann_id']
ann = self.Anns[ann_id]
polygons = []
color = []
c = 'none'
if type(ann['segmentation'][0]) == list:
# polygon used for refcoco*
for seg in ann['segmentation']:
poly = np.array(seg).reshape((len(seg) / 2, 2))
polygons.append(Polygon(poly, True, alpha=0.4))
color.append(c)
p = PatchCollection(
polygons,
facecolors=color,
edgecolors=(1, 1, 0, 0),
linewidths=3,
alpha=1,
)
ax.add_collection(p) # thick yellow polygon
p = PatchCollection(
polygons,
facecolors=color,
edgecolors=(1, 0, 0, 0),
linewidths=1,
alpha=1,
)
ax.add_collection(p) # thin red polygon
else:
# mask used for refclef
rle = ann['segmentation']
m = mask.decode(rle)
img = np.ones((m.shape[0], m.shape[1], 3))
color_mask = np.array([2.0, 166.0, 101.0]) / 255
for i in range(3):
img[:, :, i] = color_mask[i]
ax.imshow(np.dstack((img, m * 0.5)))
# show bounding-box
elif seg_box == 'box':
# ann_id = ref['ann_id']
# ann = self.Anns[ann_id]
bbox = self.getRefBox(ref['ref_id'])
box_plot = Rectangle(
(bbox[0], bbox[1]),
bbox[2],
bbox[3],
fill=False,
edgecolor='green',
linewidth=3,
)
ax.add_patch(box_plot)
def getMask(self, ref):
# return mask, area and mask-center
ann = self.refToAnn[ref['ref_id']]
image = self.Imgs[ref['image_id']]
if type(ann['segmentation'][0]) == list: # polygon
rle = mask.frPyObjects(
ann['segmentation'], image['height'], image['width']
)
else:
rle = ann['segmentation']
m = mask.decode(rle)
# sometimes there are multiple binary map (corresponding to multiple segs)
m = np.sum(m, axis=2)
m = m.astype(np.uint8) # convert to np.uint8
# compute area
area = sum(mask.area(rle)) # should be close to ann['area']
return {'mask': m, 'area': area}
def showMask(self, ref):
M = self.getMask(ref)
msk = M['mask']
ax = plt.gca()
ax.imshow(msk)
class ReferDataset(data.Dataset):
def __init__(
self,
root,
dataset='refcoco',
splitBy='google',
image_transforms=None,
target_transforms=None,
split='train',
eval_mode=False,
):
self.classes = []
self.image_transforms = image_transforms
self.target_transforms = target_transforms
self.split = split
self.refer = REFER(root, dataset=dataset, splitBy=splitBy)
ref_ids = self.refer.getRefIds(split=self.split)
img_ids = self.refer.getImgIds(ref_ids)
all_imgs = self.refer.Imgs
self.imgs = list(all_imgs[i] for i in img_ids)
self.ref_ids = ref_ids
# print(len(ref_ids))
# print(len(self.imgs))
self.sentence_raw = []
self.eval_mode = eval_mode
# if we are testing on a dataset, test all sentences of an object;
# o/w, we are validating during training, randomly sample one sentence
# for efficiency
for r in ref_ids:
ref = self.refer.Refs[r]
# ref_sentences = []
# for i, (el, sent_id) in enumerate(zip(ref['sentences'],
# ref['sent_ids'])):
for el in ref['sentences']:
sentence_raw = el['raw']
ref_sentences.append(sentence_raw)
self.sentence_raw.append(ref_sentences)
# print(len(self.sentence_raw))
def get_classes(self):
return self.classes
def __len__(self):
return len(self.ref_ids)
def __getitem__(self, index):
this_ref_id = self.ref_ids[index]
this_img_id = self.refer.getImgIds(this_ref_id)
this_img = self.refer.Imgs[this_img_id[0]]
# print(this_ref_id, this_img_id)
# print(len(self.ref_ids))
img_path = os.path.join(self.refer.IMAGE_DIR, this_img['file_name'])
img = Image.open(img_path).convert('RGB')
ref = self.refer.loadRefs(this_ref_id)
# print("ref",ref)
ref_mask = np.array(self.refer.getMask(ref[0])['mask'])
annot = np.zeros(ref_mask.shape)
annot[ref_mask == 1] = 1
target = Image.fromarray(annot.astype(np.uint8), mode='P')
# print(np.array(target), np.unique(np.array(target).flatten()))
if self.image_transforms is not None:
# resize, from PIL to tensor, and mean and std normalization
img = self.image_transforms(img)
# target = self.target_transforms(target)
target = torch.as_tensor(np.array(target, copy=True))
# target = target.permute((2, 0, 1))
sentence = self.sentence_raw[index]
return img, img_path, target, sentence
if __name__ == '__main__':
def get_transform():
transform = [
transforms.Resize((224, 224)),
transforms.ToTensor(),
# T.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
]
return transforms.Compose(transform)
transform = get_transform()
dataset_test = ReferDataset(
root='/datasets/refseg',
dataset='refcoco+',
splitBy='google',
image_transforms=transform,
target_transforms=transform,
split='train',
eval_mode=False,
)
print('loaded')
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=1
)
for img, target, sentence in data_loader_test:
# print(type(img),type(target))
print(sentence)
break