File size: 17,510 Bytes
c56c253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a72c35
 
 
 
 
 
 
 
 
c56c253
 
 
 
 
 
 
 
 
 
 
4adf448
 
 
 
 
276421d
 
aba1e24
 
 
276421d
 
 
 
 
 
 
 
 
aba1e24
76e808f
 
 
 
aba1e24
 
 
 
 
 
b38fe34
c75d349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b38fe34
cb12fa4
c75d349
 
 
 
 
 
76e808f
4adf448
c56c253
 
 
 
4a72c35
c56c253
 
 
 
 
4adf448
c56c253
 
 
 
 
 
 
 
 
76e808f
c56c253
 
 
 
 
 
4a72c35
c56c253
4a72c35
 
c56c253
4a72c35
4adf448
4a72c35
4adf448
 
 
 
 
 
 
 
 
 
 
 
 
53bd66a
4adf448
53bd66a
4adf448
 
 
53bd66a
4adf448
 
53bd66a
4adf448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53bd66a
4adf448
53bd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4adf448
 
 
 
 
 
 
 
 
53bd66a
e91b6ce
53bd66a
 
 
e91b6ce
 
 
53bd66a
e91b6ce
53bd66a
e91b6ce
53bd66a
 
4adf448
61af3b3
 
 
 
 
 
 
 
 
 
1b7bfce
4adf448
1b7bfce
 
 
61af3b3
1b7bfce
4adf448
1b7bfce
 
 
4adf448
1b7bfce
 
4adf448
1b7bfce
 
 
4adf448
 
 
4a01738
f15996c
 
 
 
b9fbc8c
f15996c
 
 
 
 
 
b9fbc8c
f15996c
 
 
 
 
 
 
 
f73b1be
f15996c
f73b1be
 
 
f15996c
f73b1be
 
 
 
 
 
 
9e9ee40
 
b9fbc8c
9e9ee40
 
 
 
b9fbc8c
9e9ee40
 
 
 
 
 
f15996c
aba1e24
 
4adf448
87b7c95
9e9ee40
9d0a20f
9c47e50
9d0a20f
4adf448
 
 
 
 
53bd66a
 
 
 
 
76e808f
53bd66a
 
4adf448
 
53bd66a
 
 
 
 
76e808f
53bd66a
 
2d2cca6
f15996c
87b7c95
2d2cca6
f15996c
c75d349
 
b38fe34
c75d349
c56c253
8b47219
 
608f12c
 
 
 
87b7c95
 
 
 
 
 
608f12c
 
 
d83049c
608f12c
 
87b7c95
608f12c
87b7c95
 
8b47219
 
87b7c95
8b47219
 
4adf448
501352e
aaec7d9
7509e06
 
4e9d252
7509e06
f8d04fa
8b47219
 
7509e06
8b47219
 
 
 
 
c75d349
aba1e24
8b47219
 
f15996c
8b47219
 
f15996c
8905446
f15996c
 
8b47219
f15996c
 
8b47219
aaec7d9
 
 
 
 
 
 
c56c253
53bd66a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import os
import torch
import librosa
import gradio as gr
from scipy.io.wavfile import write
from transformers import WavLMModel

import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder

'''
def get_wavlm():
    os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
    shutil.move('WavLM-Large.pt', 'wavlm')
'''

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("Loading FreeVC...")
hps = utils.get_hparams_from_file("configs/freevc.json")
freevc = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc.eval()
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')

print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)

print("Loading FreeVC-s...")
hps = utils.get_hparams_from_file("configs/freevc-s.json")
freevc_s = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc_s.eval()
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None)

print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)



import ffmpeg

import random 
import numpy as np 

from elevenlabs.client import ElevenLabs


def pad_buffer(audio):
    # Pad buffer to multiple of 2 bytes
    buffer_size = len(audio)
    element_size = np.dtype(np.int16).itemsize
    if buffer_size % element_size != 0:
        audio = audio + b'\0' * (element_size - (buffer_size % element_size))
    return audio 


def generate_voice(api_key, text, voice):
    client = ElevenLabs(
        api_key=api_key, # Defaults to ELEVEN_API_KEY
    )    
    audio = client.generate(text=text, voice=voice) #response.voices[0]
    audio = b"".join(audio)
    with open("output.mp3", "wb") as f:
        f.write(audio)
    return "output.mp3"


html_denoise = """
<html>
<head>
</script>
<link rel="stylesheet" href="https://gradio.s3-us-west-2.amazonaws.com/2.6.2/static/bundle.css">
</head>
<body>
<div id="target"></div>
<script src="https://gradio.s3-us-west-2.amazonaws.com/2.6.2/static/bundle.js"></script>
<script
	type="module"
	src="https://gradio.s3-us-west-2.amazonaws.com/4.15.0/gradio.js"
></script>
<iframe
    src="https://g-app-center-40055665-8145-0zp6jbv.openxlab.space"
    frameBorder="0"
    width="1280"
    height="700"
></iframe>
    
</body>
</html>
"""

def convert(api_key, text, tgt, voice, save_path):
    model = "FreeVC (24kHz)"
    with torch.no_grad():
        # tgt
        wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
        wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
        if model == "FreeVC" or model == "FreeVC (24kHz)":
            g_tgt = smodel.embed_utterance(wav_tgt)
            g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
        else:
            wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
            mel_tgt = mel_spectrogram_torch(
                wav_tgt,
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )
        # src
        src = generate_voice(api_key, text, voice)
        wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
        wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
        c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
        # infer
        if model == "FreeVC":
            audio = freevc.infer(c, g=g_tgt)
        elif model == "FreeVC-s":
            audio = freevc_s.infer(c, mel=mel_tgt)
        else:
            audio = freevc_24.infer(c, g=g_tgt)
        audio = audio[0][0].data.cpu().float().numpy()
        if model == "FreeVC" or model == "FreeVC-s":
            write(f"output/{save_path}.wav", hps.data.sampling_rate, audio)
        else:
            write(f"output/{save_path}.wav", 24000, audio)
    return f"output/{save_path}.wav"


class subtitle:
    def __init__(self,index:int, start_time, end_time, text:str):
        self.index = int(index)
        self.start_time = start_time
        self.end_time = end_time
        self.text = text.strip()
    def normalize(self,ntype:str,fps=30):
         if ntype=="prcsv":
              h,m,s,fs=(self.start_time.replace(';',':')).split(":")#seconds
              self.start_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,5)
              h,m,s,fs=(self.end_time.replace(';',':')).split(":")
              self.end_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,5)
         elif ntype=="srt":
             h,m,s=self.start_time.split(":")
             s=s.replace(",",".")
             self.start_time=int(h)*3600+int(m)*60+round(float(s),5)
             h,m,s=self.end_time.split(":")
             s=s.replace(",",".")
             self.end_time=int(h)*3600+int(m)*60+round(float(s),5)
         else:
             raise ValueError
    def add_offset(self,offset=0):
        self.start_time+=offset
        if self.start_time<0:
            self.start_time=0
        self.end_time+=offset
        if self.end_time<0:
            self.end_time=0
    def __str__(self) -> str:
        return f'id:{self.index},start:{self.start_time},end:{self.end_time},text:{self.text}'

def read_srt(uploaded_file):
    offset=0
    with open(uploaded_file.name,"r",encoding="utf-8") as f:
        file=f.readlines()
    subtitle_list=[]
    indexlist=[]
    filelength=len(file)
    for i in range(0,filelength):
        if " --> " in file[i]:
            is_st=True
            for char in file[i-1].strip().replace("\ufeff",""):
                if char not in ['0','1','2','3','4','5','6','7','8','9']:
                    is_st=False
                    break
            if is_st:
                indexlist.append(i) #get line id
    listlength=len(indexlist)
    for i in range(0,listlength-1):
        st,et=file[indexlist[i]].split(" --> ")
        id=int(file[indexlist[i]-1].strip().replace("\ufeff",""))
        text=""
        for x in range(indexlist[i]+1,indexlist[i+1]-2):
            text+=file[x]
        st=subtitle(id,st,et,text)
        st.normalize(ntype="srt")
        st.add_offset(offset=offset)
        subtitle_list.append(st)
    st,et=file[indexlist[-1]].split(" --> ")
    id=file[indexlist[-1]-1]
    text=""
    for x in range(indexlist[-1]+1,filelength):
        text+=file[x]
    st=subtitle(id,st,et,text)
    st.normalize(ntype="srt")
    st.add_offset(offset=offset)
    subtitle_list.append(st)
    return subtitle_list

import webrtcvad
from pydub import AudioSegment
from pydub.utils import make_chunks

def vad(audio_name, out_path_name):
  audio = AudioSegment.from_file(audio_name, format="wav")
  # Set the desired sample rate (WebRTC VAD supports only 8000, 16000, 32000, or 48000 Hz)
  audio = audio.set_frame_rate(48000)
  # Set single channel (mono)
  audio = audio.set_channels(1)

  # Initialize VAD
  vad = webrtcvad.Vad()
  # Set aggressiveness mode (an integer between 0 and 3, 3 is the most aggressive)
  vad.set_mode(3)

  # Convert pydub audio to bytes
  frame_duration = 30  # Duration of a frame in ms
  frame_width = int(audio.frame_rate * frame_duration / 1000)  # width of a frame in samples
  frames = make_chunks(audio, frame_duration)

  # Perform voice activity detection
  voiced_frames = []
  for frame in frames:
      if len(frame.raw_data) < frame_width * 2:  # Ensure frame is correct length
          break
      is_speech = vad.is_speech(frame.raw_data, audio.frame_rate)
      if is_speech:
          voiced_frames.append(frame)

  # Combine voiced frames back to an audio segment
  voiced_audio = sum(voiced_frames, AudioSegment.silent(duration=0))

  voiced_audio.export(f"{out_path_name}.wav", format="wav")


def trim_audio(intervals, input_file_path, output_file_path):
    # load the audio file
    audio = AudioSegment.from_file(input_file_path)

    # iterate over the list of time intervals
    for i, (start_time, end_time) in enumerate(intervals):
        # extract the segment of the audio
        segment = audio[start_time*1000:end_time*1000]
        output_file_path_i = f"increased_{i}.wav"
        
        if len(segment) < 5000:
            # Calculate how many times to repeat the audio to make it at least 5 seconds long
            repeat_count = (5000 // len(segment)) + 3
            # Repeat the audio
            longer_audio = segment * repeat_count
            # Save the extended audio
            print(f"Audio was less than 5 seconds. Extended to {len(longer_audio)} milliseconds.")
            longer_audio.export(output_file_path_i, format='wav')
            vad(f"{output_file_path_i}", f"{output_file_path}_{i}")
        else:
            print("Audio is already 5 seconds or longer.")
            segment.export(f"{output_file_path}_{i}.wav", format='wav')

import re

def sort_key(file_name):
    """Extract the last number in the file name for sorting."""
    numbers = re.findall(r'\d+', file_name)
    if numbers:
        return int(numbers[-1])
    return -1  # In case there's no number, this ensures it goes to the start.


def merge_audios(folder_path):
    output_file = "AI配音版.wav"
    # Get all WAV files in the folder
    files = [f for f in os.listdir(folder_path) if f.endswith('.wav')]
    # Sort files based on the last digit in their names
    sorted_files = sorted(files, key=sort_key)
    
    # Initialize an empty audio segment
    merged_audio = AudioSegment.empty()
    
    # Loop through each file, in order, and concatenate them
    for file in sorted_files:
        audio = AudioSegment.from_wav(os.path.join(folder_path, file))
        merged_audio += audio
        print(f"Merged: {file}")
    
    # Export the merged audio to a new file
    merged_audio.export(output_file, format="wav")
    return "AI配音版.wav"

import shutil

# get a zip file

import zipfile

def zip_sliced_files(directory, zip_filename, chosen_name):
    # Create a ZipFile object
    with zipfile.ZipFile(zip_filename, 'w') as zipf:
        # Iterate over all files in the directory
        for foldername, subfolders, filenames in os.walk(directory):
            for filename in filenames:
                # Check if the file starts with "sliced" and has a .wav extension
                if filename.startswith(f"{chosen_name}") and filename.endswith(".wav"):
                    # Create the complete file path
                    file_path = os.path.join(foldername, filename)
                    # Add the file to the zip file
                    zipf.write(file_path, arcname=filename)
                    print(f"Added {filename} to {zip_filename}")

# set speed

from pydub.effects import speedup

def change_speed(input_file, speed=1.0):
    # Load the audio file
    audio = AudioSegment.from_file(input_file)

    # Change the speed of the audio
    faster_audio = speedup(audio, playback_speed=speed)

    # Export the modified audio to a new file
    faster_audio.export("speed_changed_speech.wav", format="wav")
    return "speed_changed_speech.wav"
    
# delete files first

def delete_sliced_files(directory, chosen_name):
    # Iterate over all files in the directory
    for foldername, subfolders, filenames in os.walk(directory):
        for filename in filenames:
            # Check if the file starts with "sliced"
            if filename.startswith(f"{chosen_name}"):
                # Create the complete file path
                file_path = os.path.join(foldername, filename)
                # Delete the file
                os.remove(file_path)
                print(f"Deleted {filename}")


def convert_from_srt(api_key, filename, audio_full, voice, multilingual):

    subtitle_list = read_srt(filename)
    delete_sliced_files("./", "sliced")

    #audio_data, sr = librosa.load(audio_full, sr=44100)
        
    #write("audio_full.wav", sr, audio_data.astype(np.int16))

    if os.path.isdir("output"):
        shutil.rmtree("output")
    if multilingual==False:
        for i in subtitle_list:
            try:
                os.makedirs("output", exist_ok=True)
                trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}")
                print(f"正在合成第{i.index}条语音")
                print(f"语音内容:{i.text}")
                convert(api_key, i.text, f"sliced_audio_{i.index}_0.wav", voice, i.text + " " + str(i.index))
            except Exception:
                pass
    else:
        for i in subtitle_list:
            try:
                os.makedirs("output", exist_ok=True)
                trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}")
                print(f"正在合成第{i.index}条语音")
                print(f"语音内容:{i.text.splitlines()[1]}")
                convert(api_key, i.text.splitlines()[1], f"sliced_audio_{i.index}_0.wav", voice, i.text.splitlines()[1] + " " + str(i.index))
            except Exception:
                pass
    merge_audios("output")

    zip_sliced_files("./", "参考音频.zip", "sliced")
    
    return "AI配音版.wav", "参考音频.zip"
    
restart_markdown = ("""
### 若此页面无法正常显示,请点击[此链接](https://openxlab.org.cn/apps/detail/Kevin676/OpenAI-TTS)唤醒该程序!谢谢🍻
""")

import ffmpeg

def save_file_with_new_name(original_file_path, new_file_path):
    shutil.copyfile(original_file_path, new_file_path)


def denoise(input_files):
    delete_sliced_files("./", "input_video")

    #if os.path.exists("audio_full.wav"):
    #    os.remove("audio_full.wav")
    for video_file in input_files:

        name1 = video_file.name
        file_name_with_extension = name1.split('/')[-1]
        file_name1 = file_name_with_extension.split('.mp4')[0] + ".mp4"

        save_file_with_new_name(video_file.name, file_name1)
        
        ffmpeg.input(file_name1).output("input_video" + file_name1 + ".wav", ac=2, ar=44100).run()

    zip_sliced_files("./", "转换后的音频.zip", "input_video")


    return "转换后的音频.zip"


with gr.Blocks() as app:
    gr.Markdown("# <center>🌊💕🎶 11Labs TTS - SRT文件一键AI配音</center>")
    gr.Markdown("### <center>🌟 只需上传SRT文件和原版配音文件即可,每次一集视频AI自动配音!Developed by Kevin Wang </center>")
    with gr.Tab("📺视频转音频"):
        with gr.Row():
            inp_video = gr.Files(label="您可以上传多集包含原声配音的视频", file_types=['.mp4'])
            btn_convert = gr.Button("视频文件转音频", variant="primary")
            out_audio = gr.File(label="包含所有配音音频的zip文件")

        btn_convert.click(denoise, [inp_video], [out_audio])
    with gr.Tab("🎶AI配音"):
        with gr.Row():
            with gr.Column():
                inp0 = gr.Textbox(type='password', label='请输入您的11Labs API Key')
                inp1 = gr.File(file_count="single", label="请上传一集视频对应的SRT文件")
                inp2 = gr.Audio(label="请上传一集视频的配音文件", type="filepath")
    
                inp3 = gr.Dropdown(choices=["Rachel", "Alice", "Chris", "Adam"], label='请选择一个说话人提供基础音色', info="试听音色链接:https://elevenlabs.io/app/speech-synthesis", value='Chris')
                #inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", info="UVR-HP5去除背景音乐效果更好,但会对人声造成一定的损伤", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5")
                inp4 = gr.Checkbox(label="SRT文件是否为双语字幕", info="若为双语字幕,请打勾选择(SRT文件中需要先出现中文字幕,后英文字幕;中英字幕各占一行)")
                btn1 = gr.Button("一键开启AI配音吧💕", variant="primary")
            with gr.Column():
                out1 = gr.Audio(label="为您生成的AI完整配音", type="filepath")
                out2 = gr.File(label="包含所有参考音频的zip文件")
                inp_speed = gr.Slider(label="设置AI配音的速度", minimum=1.02, maximum=1.5, value=1.02, step=0.01)
                btn2 = gr.Button("一键改变AI配音速度")
                out3 = gr.Audio(label="变速后的AI配音", type="filepath")
        
            btn1.click(convert_from_srt, [inp0, inp1, inp2, inp3, inp4], [out1, out2])
            btn2.click(change_speed, [out1, inp_speed], [out3])
            
    gr.Markdown("### <center>注意❗:请勿生成会对任何个人或组织造成侵害的内容,请尊重他人的著作权和知识产权。用户对此程序的任何使用行为与程序开发者无关。</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')

app.launch(share=False, show_error=True)