Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import librosa | |
import gradio as gr | |
from scipy.io.wavfile import write | |
from transformers import WavLMModel | |
import utils | |
from models import SynthesizerTrn | |
from mel_processing import mel_spectrogram_torch | |
from speaker_encoder.voice_encoder import SpeakerEncoder | |
''' | |
def get_wavlm(): | |
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU') | |
shutil.move('WavLM-Large.pt', 'wavlm') | |
''' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("Loading FreeVC...") | |
hps = utils.get_hparams_from_file("configs/freevc.json") | |
freevc = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None) | |
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') | |
print("Loading FreeVC(24k)...") | |
hps = utils.get_hparams_from_file("configs/freevc-24.json") | |
freevc_24 = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_24.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None) | |
print("Loading FreeVC-s...") | |
hps = utils.get_hparams_from_file("configs/freevc-s.json") | |
freevc_s = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_s.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None) | |
print("Loading WavLM for content...") | |
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) | |
import ffmpeg | |
import random | |
import numpy as np | |
from elevenlabs import voices, generate, set_api_key, UnauthenticatedRateLimitError | |
def pad_buffer(audio): | |
# Pad buffer to multiple of 2 bytes | |
buffer_size = len(audio) | |
element_size = np.dtype(np.int16).itemsize | |
if buffer_size % element_size != 0: | |
audio = audio + b'\0' * (element_size - (buffer_size % element_size)) | |
return audio | |
def generate_voice(text, voice_name): | |
try: | |
audio = generate( | |
text[:250], # Limit to 250 characters | |
voice=voice_name, | |
model="eleven_multilingual_v2" | |
) | |
with open("output" + ".mp3", mode='wb') as f: | |
f.write(audio) | |
return "output.mp3" | |
except UnauthenticatedRateLimitError as e: | |
raise gr.Error("Thanks for trying out ElevenLabs TTS! You've reached the free tier limit. Please provide an API key to continue.") | |
except Exception as e: | |
raise gr.Error(e) | |
html_denoise = """ | |
<html> | |
<head> | |
</script> | |
<link rel="stylesheet" href="https://gradio.s3-us-west-2.amazonaws.com/2.6.2/static/bundle.css"> | |
</head> | |
<body> | |
<div id="target"></div> | |
<script src="https://gradio.s3-us-west-2.amazonaws.com/2.6.2/static/bundle.js"></script> | |
<script | |
type="module" | |
src="https://gradio.s3-us-west-2.amazonaws.com/4.15.0/gradio.js" | |
></script> | |
<iframe | |
src="https://g-app-center-40055665-8145-0zp6jbv.openxlab.space" | |
frameBorder="0" | |
width="1280" | |
height="700" | |
></iframe> | |
</body> | |
</html> | |
""" | |
def convert(api_key, text, tgt, voice, save_path): | |
model = "FreeVC (24kHz)" | |
with torch.no_grad(): | |
# tgt | |
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) | |
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
if model == "FreeVC" or model == "FreeVC (24kHz)": | |
g_tgt = smodel.embed_utterance(wav_tgt) | |
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) | |
else: | |
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) | |
mel_tgt = mel_spectrogram_torch( | |
wav_tgt, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
# src | |
os.environ["ELEVEN_API_KEY"] = api_key | |
src = generate_voice(text, voice) | |
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) | |
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) | |
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) | |
# infer | |
if model == "FreeVC": | |
audio = freevc.infer(c, g=g_tgt) | |
elif model == "FreeVC-s": | |
audio = freevc_s.infer(c, mel=mel_tgt) | |
else: | |
audio = freevc_24.infer(c, g=g_tgt) | |
audio = audio[0][0].data.cpu().float().numpy() | |
if model == "FreeVC" or model == "FreeVC-s": | |
write(f"output/{save_path}.wav", hps.data.sampling_rate, audio) | |
else: | |
write(f"output/{save_path}.wav", 24000, audio) | |
return f"output/{save_path}.wav" | |
class subtitle: | |
def __init__(self,index:int, start_time, end_time, text:str): | |
self.index = int(index) | |
self.start_time = start_time | |
self.end_time = end_time | |
self.text = text.strip() | |
def normalize(self,ntype:str,fps=30): | |
if ntype=="prcsv": | |
h,m,s,fs=(self.start_time.replace(';',':')).split(":")#seconds | |
self.start_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,5) | |
h,m,s,fs=(self.end_time.replace(';',':')).split(":") | |
self.end_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,5) | |
elif ntype=="srt": | |
h,m,s=self.start_time.split(":") | |
s=s.replace(",",".") | |
self.start_time=int(h)*3600+int(m)*60+round(float(s),5) | |
h,m,s=self.end_time.split(":") | |
s=s.replace(",",".") | |
self.end_time=int(h)*3600+int(m)*60+round(float(s),5) | |
else: | |
raise ValueError | |
def add_offset(self,offset=0): | |
self.start_time+=offset | |
if self.start_time<0: | |
self.start_time=0 | |
self.end_time+=offset | |
if self.end_time<0: | |
self.end_time=0 | |
def __str__(self) -> str: | |
return f'id:{self.index},start:{self.start_time},end:{self.end_time},text:{self.text}' | |
def read_srt(uploaded_file): | |
offset=0 | |
with open(uploaded_file.name,"r",encoding="utf-8") as f: | |
file=f.readlines() | |
subtitle_list=[] | |
indexlist=[] | |
filelength=len(file) | |
for i in range(0,filelength): | |
if " --> " in file[i]: | |
is_st=True | |
for char in file[i-1].strip().replace("\ufeff",""): | |
if char not in ['0','1','2','3','4','5','6','7','8','9']: | |
is_st=False | |
break | |
if is_st: | |
indexlist.append(i) #get line id | |
listlength=len(indexlist) | |
for i in range(0,listlength-1): | |
st,et=file[indexlist[i]].split(" --> ") | |
id=int(file[indexlist[i]-1].strip().replace("\ufeff","")) | |
text="" | |
for x in range(indexlist[i]+1,indexlist[i+1]-2): | |
text+=file[x] | |
st=subtitle(id,st,et,text) | |
st.normalize(ntype="srt") | |
st.add_offset(offset=offset) | |
subtitle_list.append(st) | |
st,et=file[indexlist[-1]].split(" --> ") | |
id=file[indexlist[-1]-1] | |
text="" | |
for x in range(indexlist[-1]+1,filelength): | |
text+=file[x] | |
st=subtitle(id,st,et,text) | |
st.normalize(ntype="srt") | |
st.add_offset(offset=offset) | |
subtitle_list.append(st) | |
return subtitle_list | |
import webrtcvad | |
from pydub import AudioSegment | |
from pydub.utils import make_chunks | |
def vad(audio_name, out_path_name): | |
audio = AudioSegment.from_file(audio_name, format="wav") | |
# Set the desired sample rate (WebRTC VAD supports only 8000, 16000, 32000, or 48000 Hz) | |
audio = audio.set_frame_rate(48000) | |
# Set single channel (mono) | |
audio = audio.set_channels(1) | |
# Initialize VAD | |
vad = webrtcvad.Vad() | |
# Set aggressiveness mode (an integer between 0 and 3, 3 is the most aggressive) | |
vad.set_mode(3) | |
# Convert pydub audio to bytes | |
frame_duration = 30 # Duration of a frame in ms | |
frame_width = int(audio.frame_rate * frame_duration / 1000) # width of a frame in samples | |
frames = make_chunks(audio, frame_duration) | |
# Perform voice activity detection | |
voiced_frames = [] | |
for frame in frames: | |
if len(frame.raw_data) < frame_width * 2: # Ensure frame is correct length | |
break | |
is_speech = vad.is_speech(frame.raw_data, audio.frame_rate) | |
if is_speech: | |
voiced_frames.append(frame) | |
# Combine voiced frames back to an audio segment | |
voiced_audio = sum(voiced_frames, AudioSegment.silent(duration=0)) | |
voiced_audio.export(f"{out_path_name}.wav", format="wav") | |
def trim_audio(intervals, input_file_path, output_file_path): | |
# load the audio file | |
audio = AudioSegment.from_file(input_file_path) | |
# iterate over the list of time intervals | |
for i, (start_time, end_time) in enumerate(intervals): | |
# extract the segment of the audio | |
segment = audio[start_time*1000:end_time*1000] | |
output_file_path_i = f"increased_{i}.wav" | |
if len(segment) < 5000: | |
# Calculate how many times to repeat the audio to make it at least 5 seconds long | |
repeat_count = (5000 // len(segment)) + 3 | |
# Repeat the audio | |
longer_audio = segment * repeat_count | |
# Save the extended audio | |
print(f"Audio was less than 5 seconds. Extended to {len(longer_audio)} milliseconds.") | |
longer_audio.export(output_file_path_i, format='wav') | |
vad(f"{output_file_path_i}", f"{output_file_path}_{i}") | |
else: | |
print("Audio is already 5 seconds or longer.") | |
segment.export(f"{output_file_path}_{i}.wav", format='wav') | |
import re | |
def sort_key(file_name): | |
"""Extract the last number in the file name for sorting.""" | |
numbers = re.findall(r'\d+', file_name) | |
if numbers: | |
return int(numbers[-1]) | |
return -1 # In case there's no number, this ensures it goes to the start. | |
def merge_audios(folder_path): | |
output_file = "AI配音版.wav" | |
# Get all WAV files in the folder | |
files = [f for f in os.listdir(folder_path) if f.endswith('.wav')] | |
# Sort files based on the last digit in their names | |
sorted_files = sorted(files, key=sort_key) | |
# Initialize an empty audio segment | |
merged_audio = AudioSegment.empty() | |
# Loop through each file, in order, and concatenate them | |
for file in sorted_files: | |
audio = AudioSegment.from_wav(os.path.join(folder_path, file)) | |
merged_audio += audio | |
print(f"Merged: {file}") | |
# Export the merged audio to a new file | |
merged_audio.export(output_file, format="wav") | |
return "AI配音版.wav" | |
import shutil | |
def convert_from_srt(apikey, filename, audio_full, voice, multilingual): | |
subtitle_list = read_srt(filename) | |
#audio_data, sr = librosa.load(audio_full, sr=44100) | |
#write("audio_full.wav", sr, audio_data.astype(np.int16)) | |
if os.path.isdir("output"): | |
shutil.rmtree("output") | |
if multilingual==False: | |
for i in subtitle_list: | |
try: | |
os.makedirs("output", exist_ok=True) | |
trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}") | |
print(f"正在合成第{i.index}条语音") | |
print(f"语音内容:{i.text}") | |
convert(apikey, i.text, f"sliced_audio_{i.index}_0.wav", voice, i.text + " " + str(i.index)) | |
except Exception: | |
pass | |
else: | |
for i in subtitle_list: | |
try: | |
os.makedirs("output", exist_ok=True) | |
trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}") | |
print(f"正在合成第{i.index}条语音") | |
print(f"语音内容:{i.text.splitlines()[1]}") | |
convert(apikey, i.text.splitlines()[1], f"sliced_audio_{i.index}_0.wav", voice, i.text.splitlines()[1] + " " + str(i.index)) | |
except Exception: | |
pass | |
merge_audios("output") | |
return "AI配音版.wav" | |
restart_markdown = (""" | |
### 若此页面无法正常显示,请点击[此链接](https://openxlab.org.cn/apps/detail/Kevin676/OpenAI-TTS)唤醒该程序!谢谢🍻 | |
""") | |
all_voices = voices() | |
import ffmpeg | |
def denoise(video_full): | |
if os.path.exists("audio_full.wav"): | |
os.remove("audio_full.wav") | |
ffmpeg.input(video_full).output("audio_full.wav", ac=2, ar=44100).run() | |
return "audio_full.wav" | |
with gr.Blocks() as app: | |
gr.Markdown("# <center>🌊💕🎶 11Labs TTS - SRT文件一键AI配音</center>") | |
gr.Markdown("### <center>🌟 只需上传SRT文件和原版配音文件即可,每次一集视频AI自动配音!Developed by Kevin Wang </center>") | |
with gr.Tab("📺视频转音频"): | |
with gr.Row(): | |
inp_video = gr.Video(label="请上传一集包含原声配音的视频", info="需要是.mp4视频文件") | |
btn_convert = gr.Button("视频文件转音频", variant="primary") | |
out_audio = gr.Audio(label="视频对应的音频文件,可以下载至本地后进行降噪处理", type="filepath") | |
btn_convert.click(denoise, [inp_video], [out_audio]) | |
with gr.Tab("🎶AI配音"): | |
with gr.Row(): | |
with gr.Column(): | |
inp0 = gr.Textbox(type='password', label='请输入您的11Labs API Key') | |
inp1 = gr.File(file_count="single", label="请上传一集视频对应的SRT文件") | |
inp2 = gr.Audio(label="请上传一集视频的配音文件", type="filepath") | |
inp3 = gr.Dropdown(choices=[ voice.name for voice in all_voices ], label='请选择一个说话人提供基础音色', info="试听音色链接:https://huggingface.co/spaces/elevenlabs/tts", value='Rachel') | |
#inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", info="UVR-HP5去除背景音乐效果更好,但会对人声造成一定的损伤", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5") | |
inp4 = gr.Checkbox(label="SRT文件是否为双语字幕", info="若为双语字幕,请打勾选择(SRT文件中需要先出现中文字幕,后英文字幕;中英字幕各占一行)") | |
btn = gr.Button("一键开启AI配音吧💕", variant="primary") | |
with gr.Column(): | |
out1 = gr.Audio(label="为您生成的AI完整配音", type="filepath") | |
btn.click(convert_from_srt, [inp0, inp1, inp2, inp3, inp4], [out1]) | |
gr.Markdown("### <center>注意❗:请勿生成会对任何个人或组织造成侵害的内容,请尊重他人的著作权和知识产权。用户对此程序的任何使用行为与程序开发者无关。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
app.launch(share=False, show_error=True) |