kevinwang676's picture
Update app.py
9c47e50 verified
raw
history blame
11 kB
import os
import torch
import librosa
import gradio as gr
from scipy.io.wavfile import write
from transformers import WavLMModel
import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder
'''
def get_wavlm():
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
shutil.move('WavLM-Large.pt', 'wavlm')
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Loading FreeVC...")
hps = utils.get_hparams_from_file("configs/freevc.json")
freevc = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc.eval()
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')
print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)
print("Loading FreeVC-s...")
hps = utils.get_hparams_from_file("configs/freevc-s.json")
freevc_s = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_s.eval()
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None)
print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
from openai import OpenAI
import ffmpeg
def convert(api_key, text, tgt, voice, save_path):
model = "FreeVC (24kHz)"
with torch.no_grad():
# tgt
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if model == "FreeVC" or model == "FreeVC (24kHz)":
g_tgt = smodel.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
# src
client = OpenAI(api_key=api_key)
response = client.audio.speech.create(
model="tts-1-hd",
voice=voice,
input=text,
)
response.stream_to_file("output_openai.mp3")
src = "output_openai.mp3"
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
# infer
if model == "FreeVC":
audio = freevc.infer(c, g=g_tgt)
elif model == "FreeVC-s":
audio = freevc_s.infer(c, mel=mel_tgt)
else:
audio = freevc_24.infer(c, g=g_tgt)
audio = audio[0][0].data.cpu().float().numpy()
if model == "FreeVC" or model == "FreeVC-s":
write(f"output/{save_path}.wav", hps.data.sampling_rate, audio)
else:
write(f"output/{save_path}.wav", 24000, audio)
return f"output/{save_path}.wav"
class subtitle:
def __init__(self,index:int, start_time, end_time, text:str):
self.index = int(index)
self.start_time = start_time
self.end_time = end_time
self.text = text.strip()
def normalize(self,ntype:str,fps=30):
if ntype=="prcsv":
h,m,s,fs=(self.start_time.replace(';',':')).split(":")#seconds
self.start_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,2)
h,m,s,fs=(self.end_time.replace(';',':')).split(":")
self.end_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,2)
elif ntype=="srt":
h,m,s=self.start_time.split(":")
s=s.replace(",",".")
self.start_time=int(h)*3600+int(m)*60+round(float(s),2)
h,m,s=self.end_time.split(":")
s=s.replace(",",".")
self.end_time=int(h)*3600+int(m)*60+round(float(s),2)
else:
raise ValueError
def add_offset(self,offset=0):
self.start_time+=offset
if self.start_time<0:
self.start_time=0
self.end_time+=offset
if self.end_time<0:
self.end_time=0
def __str__(self) -> str:
return f'id:{self.index},start:{self.start_time},end:{self.end_time},text:{self.text}'
def read_srt(uploaded_file):
offset=0
with open(uploaded_file.name,"r",encoding="utf-8") as f:
file=f.readlines()
subtitle_list=[]
indexlist=[]
filelength=len(file)
for i in range(0,filelength):
if " --> " in file[i]:
is_st=True
for char in file[i-1].strip().replace("\ufeff",""):
if char not in ['0','1','2','3','4','5','6','7','8','9']:
is_st=False
break
if is_st:
indexlist.append(i) #get line id
listlength=len(indexlist)
for i in range(0,listlength-1):
st,et=file[indexlist[i]].split(" --> ")
id=int(file[indexlist[i]-1].strip().replace("\ufeff",""))
text=""
for x in range(indexlist[i]+1,indexlist[i+1]-2):
text+=file[x]
st=subtitle(id,st,et,text)
st.normalize(ntype="srt")
st.add_offset(offset=offset)
subtitle_list.append(st)
st,et=file[indexlist[-1]].split(" --> ")
id=file[indexlist[-1]-1]
text=""
for x in range(indexlist[-1]+1,filelength):
text+=file[x]
st=subtitle(id,st,et,text)
st.normalize(ntype="srt")
st.add_offset(offset=offset)
subtitle_list.append(st)
return subtitle_list
from pydub import AudioSegment
def trim_audio(intervals, input_file_path, output_file_path):
# load the audio file
audio = AudioSegment.from_file(input_file_path)
# iterate over the list of time intervals
for i, (start_time, end_time) in enumerate(intervals):
# extract the segment of the audio
segment = audio[start_time*1000:end_time*1000]
# construct the output file path
output_file_path_i = f"{output_file_path}_{i}.wav"
# export the segment to a file
segment.export(output_file_path_i, format='wav')
import re
def sort_key(file_name):
"""Extract the last number in the file name for sorting."""
numbers = re.findall(r'\d+', file_name)
if numbers:
return int(numbers[-1])
return -1 # In case there's no number, this ensures it goes to the start.
def merge_audios(folder_path):
output_file = "AI配音版.wav"
# Get all WAV files in the folder
files = [f for f in os.listdir(folder_path) if f.endswith('.wav')]
# Sort files based on the last digit in their names
sorted_files = sorted(files, key=sort_key)
# Initialize an empty audio segment
merged_audio = AudioSegment.empty()
# Loop through each file, in order, and concatenate them
for file in sorted_files:
audio = AudioSegment.from_wav(os.path.join(folder_path, file))
merged_audio += audio
print(f"Merged: {file}")
# Export the merged audio to a new file
merged_audio.export(output_file, format="wav")
return "AI配音版.wav"
import shutil
from pathlib import Path
def convert_from_srt(apikey, filename, audio_full, voice, multilingual):
subtitle_list = read_srt(filename)
#audio_data, sr = torchaudio.load(audio_full)
audio_data, sr = librosa.load((str(Path(audio_full))), sr=44100)
write("audio_full.wav", sr, audio_data.astype(np.int16))
if os.path.isdir("output"):
shutil.rmtree("output")
if multilingual==False:
for i in subtitle_list:
os.makedirs("output", exist_ok=True)
trim_audio([[i.start_time, i.end_time]], "audio_full.wav", f"sliced_audio_{i.index}")
print(f"正在合成第{i.index}条语音")
print(f"语音内容:{i.text}")
convert(apikey, i.text, f"sliced_audio_{i.index}_0.wav", voice, i.text + " " + str(i.index))
else:
for i in subtitle_list:
os.makedirs("output", exist_ok=True)
trim_audio([[i.start_time, i.end_time]], "audio_full.wav", f"sliced_audio_{i.index}")
print(f"正在合成第{i.index}条语音")
print(f"语音内容:{i.text.splitlines()[1]}")
convert(apikey, i.text.splitlines()[1], f"sliced_audio_{i.index}_0.wav", voice, i.text.splitlines()[1] + " " + str(i.index))
return merge_audios("output")
with gr.Blocks() as app:
gr.Markdown("# <center>🌊💕🎶 OpenAI TTS - SRT文件一键AI配音</center>")
gr.Markdown("### <center>🌟 只需上传SRT文件和原版配音文件即可,每次一集视频AI自动配音!Developed by Kevin Wang </center>")
with gr.Row():
with gr.Column():
inp0 = gr.Textbox(type='password', label='请输入您的OpenAI API Key')
inp1 = gr.File(file_count="single", label="请上传一集视频对应的SRT文件")
inp2 = gr.Audio(label="请上传一集视频的配音文件", info="需要是.wav音频文件")
inp3 = gr.Dropdown(choices=['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'], label='请选择一个说话人提供基础音色', info="试听音色链接:https://platform.openai.com/docs/guides/text-to-speech/voice-options", value='alloy')
#inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", info="UVR-HP5去除背景音乐效果更好,但会对人声造成一定的损伤", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5")
inp4 = gr.Checkbox(label="SRT文件是否为双语字幕", info="若为双语字幕,请打勾选择(SRT文件中需要先出现中文字幕,后英文字幕;中英字幕各占一行)")
btn = gr.Button("一键开启AI配音吧💕", variant="primary")
with gr.Column():
out1 = gr.Audio(label="为您生成的AI完整配音", type="filepath")
btn.click(convert_from_srt, [inp0, inp1, inp2, inp3, inp4], [out1])
gr.Markdown("### <center>注意❗:请勿生成会对任何个人或组织造成侵害的内容,请尊重他人的著作权和知识产权。用户对此程序的任何使用行为与程序开发者无关。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.launch(show_error=True)