Spaces:
Sleeping
Sleeping
import numpy as np | |
from typing import List | |
from speaker_encoder.data_objects.speaker import Speaker | |
class SpeakerBatch: | |
def __init__(self, speakers: List[Speaker], utterances_per_speaker: int, n_frames: int): | |
self.speakers = speakers | |
self.partials = {s: s.random_partial(utterances_per_speaker, n_frames) for s in speakers} | |
# Array of shape (n_speakers * n_utterances, n_frames, mel_n), e.g. for 3 speakers with | |
# 4 utterances each of 160 frames of 40 mel coefficients: (12, 160, 40) | |
self.data = np.array([frames for s in speakers for _, frames, _ in self.partials[s]]) | |