File size: 11,266 Bytes
6a422c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# flake8: noqa E501
import re
import traceback
from typing import Dict

import json
from config_utils import parse_configuration
from help_tools import LogoGeneratorTool, config_conversion
from modelscope_agent.agent import AgentExecutor
from modelscope_agent.agent_types import AgentType
from modelscope_agent.llm import LLMFactory
from modelscope_agent.prompt import MessagesGenerator

SYSTEM = 'You are a helpful assistant.'

PROMPT_CUSTOM = """你现在要扮演一个制造AI角色(AI-Agent)的AI助手(QwenBuilder)。
你需要和用户进行对话,明确用户对AI-Agent的要求。并根据已有信息和你的联想能力,尽可能填充完整的配置文件:

配置文件为json格式:
{"name": "... # AI-Agent的名字", "description": "... # 对AI-Agent的要求,简单描述", "instructions": "... # 分点描述对AI-Agent的具体功能要求,尽量详细一些,类型是一个字符串数组,起始为[]", "prompt_recommend": "... # 推荐的用户将对AI-Agent说的指令,用于指导用户使用AI-Agent,类型是一个字符串数组,请尽可能补充4句左右,起始为["你可以做什么?"]", "logo_prompt": "... # 画AI-Agent的logo的指令,不需要画logo或不需要更新logo时可以为空,类型是string"}

在接下来的对话中,请在回答时严格使用如下格式,先作出回复,再生成配置文件,不要回复其他任何内容:
Answer: ... # 你希望对用户说的话,用于询问用户对AI-Agent的要求,不要重复确认用户已经提出的要求,而应该拓展出新的角度来询问用户,尽量细节和丰富,禁止为空
Config: ... # 生成的配置文件,严格按照以上json格式
RichConfig: ... # 格式和核心内容和Config相同,但是保证name和description不为空;instructions需要在Config的基础上扩充字数,使指令更加详尽,如果用户给出了详细指令,请完全保留;补充prompt_recommend,并保证prompt_recommend是推荐的用户将对AI-Agent说的指令。请注意从用户的视角来描述prompt_recommend、description和instructions。

一个优秀的RichConfig样例如下:
{"name": "小红书文案生成助手", "description": "一个专为小红书用户设计的文案生成助手。", "instructions": "1. 理解并回应用户的指令;2. 根据用户的需求生成高质量的小红书风格文案;3. 使用表情提升文本丰富度", "prompt_recommend": ["你可以帮我生成一段关于旅行的文案吗?", "你会写什么样的文案?", "可以推荐一个小红书文案模版吗?"], "logo_prompt": "一个写作助手logo,包含一只羽毛钢笔"}


明白了请说“好的。”, 不要说其他的。"""

LOGO_TOOL_NAME = 'logo_designer'

ANSWER = 'Answer'
CONFIG = 'Config'
ASSISTANT_PROMPT = """{}: <answer>\n{}: <config>\nRichConfig: <rich_config>""".format(
    ANSWER, CONFIG)

UPDATING_CONFIG_STEP = '🚀Updating Config...'
CONFIG_UPDATED_STEP = '✅Config Updated!'
UPDATING_LOGO_STEP = '🚀Updating Logo...'
LOGO_UPDATED_STEP = '✅Logo Updated!'


def init_builder_chatbot_agent(uuid_str):
    # build model
    builder_cfg, model_cfg, _, _, _, _ = parse_configuration(uuid_str)

    # additional tool
    additional_tool_list = {LOGO_TOOL_NAME: LogoGeneratorTool()}
    tool_cfg = {LOGO_TOOL_NAME: {'is_remote_tool': True}}

    # build llm
    print(f'using builder model {builder_cfg.model}')
    llm = LLMFactory.build_llm(builder_cfg.model, model_cfg)
    llm.set_agent_type(AgentType.Messages)

    # build prompt
    starter_messages = [{
        'role': 'system',
        'content': SYSTEM
    }, {
        'role': 'user',
        'content': PROMPT_CUSTOM
    }, {
        'role': 'assistant',
        'content': '好的。'
    }]

    # prompt generator
    prompt_generator = MessagesGenerator(
        system_template=SYSTEM, custom_starter_messages=starter_messages)

    # build agent
    agent = BuilderChatbotAgent(
        llm,
        tool_cfg,
        agent_type=AgentType.Messages,
        prompt_generator=prompt_generator,
        additional_tool_list=additional_tool_list)
    agent.set_available_tools([LOGO_TOOL_NAME])
    return agent


class BuilderChatbotAgent(AgentExecutor):

    def __init__(self, llm, tool_cfg, agent_type, prompt_generator,
                 additional_tool_list):

        super().__init__(
            llm,
            tool_cfg,
            agent_type=agent_type,
            additional_tool_list=additional_tool_list,
            prompt_generator=prompt_generator,
            tool_retrieval=False)

        # used to reconstruct assistant message when builder config is updated
        self._last_assistant_structured_response = {}

    def stream_run(self,
                   task: str,
                   remote: bool = True,
                   print_info: bool = False,
                   uuid_str: str = '') -> Dict:

        # retrieve tools
        tool_list = self.retrieve_tools(task)
        self.prompt_generator.init_prompt(task, tool_list, [])
        function_list = []

        llm_result, exec_result = '', ''

        idx = 0

        while True:
            idx += 1
            llm_artifacts = self.prompt_generator.generate(
                llm_result, exec_result)
            if print_info:
                print(f'|LLM inputs in round {idx}:\n{llm_artifacts}')

            llm_result = ''
            try:
                parser_obj = AnswerParser()
                for s in self.llm.stream_generate(llm_artifacts=llm_artifacts):
                    llm_result += s
                    answer, finish = parser_obj.parse_answer(llm_result)
                    if answer == '':
                        continue
                    result = {'llm_text': answer}
                    if finish:
                        result.update({'step': UPDATING_CONFIG_STEP})
                    yield result

                if print_info:
                    print(f'|LLM output in round {idx}:\n{llm_result}')
            except Exception as e:
                yield {'error': 'llm result is not valid'}

            try:
                re_pattern_config = re.compile(
                    pattern=r'Config: ([\s\S]+)\nRichConfig')
                res = re_pattern_config.search(llm_result)
                if res is None:
                    return
                config = res.group(1).strip()
                self._last_assistant_structured_response['config_str'] = config

                rich_config = llm_result[llm_result.rfind('RichConfig:')
                                         + len('RichConfig:'):].strip()
                try:
                    answer = json.loads(rich_config)
                except Exception:
                    print('parse RichConfig error')
                    return
                self._last_assistant_structured_response[
                    'rich_config_dict'] = answer
                builder_cfg = config_conversion(answer, uuid_str=uuid_str)
                yield {'exec_result': {'result': builder_cfg}}
                yield {'step': CONFIG_UPDATED_STEP}
            except ValueError as e:
                print(e)
                yield {'error content=[{}]'.format(llm_result)}
                return

            # record the llm_result result
            _ = self.prompt_generator.generate(
                {
                    'role': 'assistant',
                    'content': llm_result
                }, '')

            messages = self.prompt_generator.history
            if 'logo_prompt' in answer and len(messages) > 4 and (
                    answer['logo_prompt'] not in messages[-3]['content']):
                #  draw logo
                yield {'step': UPDATING_LOGO_STEP}
                params = {
                    'user_requirement': answer['logo_prompt'],
                    'uuid_str': uuid_str
                }

                tool = self.tool_list[LOGO_TOOL_NAME]
                try:
                    exec_result = tool(**params, remote=remote)
                    yield {'exec_result': exec_result}
                    yield {'step': LOGO_UPDATED_STEP}

                    return
                except Exception as e:
                    exec_result = f'Action call error: {LOGO_TOOL_NAME}: {params}. \n Error message: {e}'
                    yield {'error': exec_result}
                    self.prompt_generator.reset()
                    return
            else:
                return

    def update_config_to_history(self, config: Dict):
        """ update builder config to message when user modify configuration

        Args:
            config info read from builder config file
        """
        if len(
                self.prompt_generator.history
        ) > 0 and self.prompt_generator.history[-1]['role'] == 'assistant':
            answer = self._last_assistant_structured_response['answer_str']
            simple_config = self._last_assistant_structured_response[
                'config_str']

            rich_config_dict = {
                k: config[k]
                for k in ['name', 'description', 'prompt_recommend']
            }
            rich_config_dict[
                'logo_prompt'] = self._last_assistant_structured_response[
                    'rich_config_dict']['logo_prompt']
            rich_config_dict['instructions'] = config['instruction'].split(';')

            rich_config = json.dumps(rich_config_dict, ensure_ascii=False)
            new_content = ASSISTANT_PROMPT.replace('<answer>', answer).replace(
                '<config>', simple_config).replace('<rich_config>',
                                                   rich_config)
            self.prompt_generator.history[-1]['content'] = new_content


def beauty_output(response: str, step_result: str):
    flag_list = [
        CONFIG_UPDATED_STEP, UPDATING_CONFIG_STEP, LOGO_UPDATED_STEP,
        UPDATING_LOGO_STEP
    ]

    if step_result in flag_list:
        end_str = ''
        for item in flag_list:
            if response.endswith(item):
                end_str = item
        if end_str == '':
            response = f'{response}\n{step_result}'
        elif end_str in [CONFIG_UPDATED_STEP, LOGO_UPDATED_STEP]:
            response = f'{response}\n{step_result}'
        else:
            response = response[:-len('\n' + end_str)]
            response = f'{response}\n{step_result}'

    return response


class AnswerParser(object):

    def __init__(self):
        self._history = ''

    def parse_answer(self, llm_result: str):
        finish = False
        answer_prompt = ANSWER + ': '

        if len(llm_result) >= len(answer_prompt):
            start_pos = llm_result.find(answer_prompt)
            end_pos = llm_result.find(f'\n{CONFIG}')
            if start_pos >= 0:
                if end_pos > start_pos:
                    result = llm_result[start_pos + len(answer_prompt):end_pos]
                    finish = True
                else:
                    result = llm_result[start_pos + len(answer_prompt):]
            else:
                result = llm_result
        else:
            result = ''

        new_result = result[len(self._history):]
        self._history = result
        return new_result, finish