AI-Agent / agentfabric /appBot.py
kevinwang676's picture
Upload folder using huggingface_hub
6a422c8
raw
history blame
6.23 kB
import os
import random
import shutil
import sys
import traceback
import gradio as gr
from config_utils import get_avatar_image, get_ci_dir, parse_configuration
from gradio_utils import ChatBot, format_cover_html
from user_core import init_user_chatbot_agent
uuid_str = 'local_user'
builder_cfg, model_cfg, tool_cfg, available_tool_list, _, _ = parse_configuration(
uuid_str)
suggests = builder_cfg.get('prompt_recommend', [])
avatar_pairs = get_avatar_image(builder_cfg.get('avatar', ''), uuid_str)
customTheme = gr.themes.Default(
primary_hue=gr.themes.utils.colors.blue,
radius_size=gr.themes.utils.sizes.radius_none,
)
def check_uuid(uuid_str):
if not uuid_str or uuid_str == '':
if os.getenv('MODELSCOPE_ENVIRONMENT') == 'studio':
raise gr.Error('请登陆后使用! (Please login first)')
else:
uuid_str = 'local_user'
return uuid_str
def init_user(state):
try:
seed = state.get('session_seed', random.randint(0, 1000000000))
user_agent = init_user_chatbot_agent(uuid_str)
user_agent.seed = seed
state['user_agent'] = user_agent
except Exception as e:
error = traceback.format_exc()
print(f'Error:{e}, with detail: {error}')
return state
# 创建 Gradio 界面
demo = gr.Blocks(css='assets/appBot.css', theme=customTheme)
with demo:
gr.Markdown(
'# <center> \N{fire} AgentFabric powered by Modelscope-agent ([github star](https://github.com/modelscope/modelscope-agent/tree/main))</center>' # noqa E501
)
draw_seed = random.randint(0, 1000000000)
state = gr.State({'session_seed': draw_seed})
with gr.Row(elem_classes='container'):
with gr.Column(scale=4):
with gr.Column():
# Preview
user_chatbot = ChatBot(
value=[[None, '尝试问我一点什么吧~']],
elem_id='user_chatbot',
elem_classes=['markdown-body'],
avatar_images=avatar_pairs,
height=600,
latex_delimiters=[],
show_label=False)
with gr.Row():
with gr.Column(scale=12):
preview_chat_input = gr.Textbox(
show_label=False,
container=False,
placeholder='跟我聊聊吧~')
with gr.Column(min_width=70, scale=1):
upload_button = gr.UploadButton(
'上传',
file_types=[
'.csv', '.doc', '.docx', '.xls', '.xlsx', '.txt',
'.md', '.pdf', '.jpeg', '.png', '.jpg', '.gif'
],
file_count='multiple')
with gr.Column(min_width=70, scale=1):
preview_send_button = gr.Button('发送', variant='primary')
with gr.Column(scale=1):
user_chat_bot_cover = gr.HTML(
format_cover_html(builder_cfg, avatar_pairs[1]))
user_chat_bot_suggest = gr.Examples(
label='Prompt Suggestions',
examples=suggests,
inputs=[preview_chat_input])
def upload_file(chatbot, upload_button, _state):
_uuid_str = check_uuid(uuid_str)
new_file_paths = []
if 'file_paths' in _state:
file_paths = _state['file_paths']
else:
file_paths = []
for file in upload_button:
file_name = os.path.basename(file.name)
# covert xxx.json to xxx_uuid_str.json
file_name = file_name.replace('.', f'_{_uuid_str}.')
file_path = os.path.join(get_ci_dir(), file_name)
if not os.path.exists(file_path):
# make sure file path's directory exists
os.makedirs(os.path.dirname(file_path), exist_ok=True)
shutil.copy(file.name, file_path)
file_paths.append(file_path)
new_file_paths.append(file_path)
chatbot.append((None, f'上传文件{file_name},成功'))
yield {
user_chatbot: gr.Chatbot.update(visible=True, value=chatbot),
preview_chat_input: gr.Textbox.update(value='')
}
_state['file_paths'] = file_paths
_state['new_file_paths'] = new_file_paths
upload_button.upload(
upload_file,
inputs=[user_chatbot, upload_button, state],
outputs=[user_chatbot, preview_chat_input])
def send_message(chatbot, input, _state):
# 将发送的消息添加到聊天历史
user_agent = _state['user_agent']
if 'new_file_paths' in _state:
new_file_paths = _state['new_file_paths']
else:
new_file_paths = []
_state['new_file_paths'] = []
chatbot.append((input, ''))
yield {
user_chatbot: chatbot,
preview_chat_input: gr.Textbox.update(value=''),
}
response = ''
for frame in user_agent.stream_run(
input, print_info=True, remote=False,
append_files=new_file_paths):
# is_final = frame.get("frame_is_final")
llm_result = frame.get('llm_text', '')
exec_result = frame.get('exec_result', '')
# llm_result = llm_result.split("<|user|>")[0].strip()
if len(exec_result) != 0:
# action_exec_result
if isinstance(exec_result, dict):
exec_result = str(exec_result['result'])
frame_text = f'<result>{exec_result}</result>'
else:
# llm result
frame_text = llm_result
# important! do not change this
response += frame_text
chatbot[-1] = (input, response)
yield {
user_chatbot: chatbot,
}
preview_send_button.click(
send_message,
inputs=[user_chatbot, preview_chat_input, state],
outputs=[user_chatbot, preview_chat_input])
demo.load(init_user, inputs=[state], outputs=[state])
demo.queue()
demo.launch()