import re from typing import Dict, Tuple import json from modelscope_agent.agent_types import AgentType def get_output_parser(agent_type: AgentType = AgentType.DEFAULT): if AgentType.DEFAULT == agent_type or agent_type == AgentType.MS_AGENT: return MsOutputParser() elif AgentType.MRKL == agent_type: return MRKLOutputParser() elif AgentType.Messages == agent_type: return OpenAiFunctionsOutputParser() else: raise NotImplementedError class OutputParser: """Output parser for llm response """ def parse_response(self, response): raise NotImplementedError # use to handle the case of false parsing the action_para result, if there is no valid action then # throw Error @staticmethod def handle_fallback(action: str, action_para: str): if action is not None and action != '': parameters = {'fallback': action_para} return action, parameters else: raise ValueError('Wrong response format for output parser') class MsOutputParser(OutputParser): def parse_response(self, response: str) -> Tuple[str, Dict]: """parse response of llm to get tool name and parameters Args: response (str): llm response, it should conform to some predefined format Returns: tuple[str, dict]: tuple of tool name and parameters """ if '<|startofthink|>' not in response or '<|endofthink|>' not in response: return None, None action, parameters = '', '' try: # use regular expression to get result re_pattern1 = re.compile( pattern=r'<\|startofthink\|>([\s\S]+)<\|endofthink\|>') think_content = re_pattern1.search(response).group(1) re_pattern2 = re.compile(r'{[\s\S]+}') think_content = re_pattern2.search(think_content).group() json_content = json.loads(think_content.replace('\n', '')) action = json_content.get('api_name', json_content.get('name', 'unknown')) parameters = json_content.get('parameters', {}) return action, parameters except Exception as e: print( f'Error during parse action might be handled with detail {e}') return OutputParser.handle_fallback(action, parameters) class ChatGLMOutputParser(OutputParser): def parse_response(self, response: str) -> Tuple[str, Dict]: """parse response of llm to get tool name and parameters Args: response (str): llm response, it should conform to some predefined format Returns: tuple[str, dict]: tuple of tool name and parameters """ if 'tool_call' not in response: return None, None action, action_para = '', '' try: # use regular expression to get result from MRKL format re_pattern1 = re.compile( pattern=r'([\s\S]+)```([\s\S]+)tool_call\(([\s\S]+)```') res = re_pattern1.search(response) action_list = re.split('<|>|\|', res.group(1).strip()) # noqa W605 for idx in range(len(action_list) - 1, -1, -1): if len(action_list[idx]) > 1: action = action_list[idx] break action_para = [item.strip() for item in res.group(3).split(',')] parameters = {} re_pattern2 = re.compile(pattern=r'([\s\S]+)=\'([\s\S]+)\'') for para in action_para: res = re_pattern2.search(para) parameters[res.group(1)] = res.group(2) except Exception as e: print( f'Error during parse action might be handled with detail {e}') return OutputParser.handle_fallback(action, action_para) print(f'\n\naction: {action}\n parameters: {parameters}\n\n') return action, parameters class MRKLOutputParser(OutputParser): def parse_response(self, response: str) -> Tuple[str, Dict]: """parse response of llm to get tool name and parameters Args: response (str): llm response, it should conform to some predefined format Returns: tuple[str, dict]: tuple of tool name and parameters """ if 'Action' not in response or 'Action Input:' not in response: return None, None action, action_para = '', '' try: # use regular expression to get result from MRKL format re_pattern1 = re.compile( pattern=r'Action:([\s\S]+)Action Input:([\s\S]+)') res = re_pattern1.search(response) action = res.group(1).strip() action_para = res.group(2) parameters = json.loads(action_para.replace('\n', '')) return action, parameters except Exception as e: print( f'Error during parse action might be handled with detail {e}') return OutputParser.handle_fallback(action, action_para) class OpenAiFunctionsOutputParser(OutputParser): def parse_response(self, response: dict) -> Tuple[str, Dict]: """parse response of llm to get tool name and parameters Args: response (str): llm response, it should be an openai response message such as { "content": null, "function_call": { "arguments": "{\n \"location\": \"Boston, MA\"\n}", "name": "get_current_weather" }, "role": "assistant" } Returns: tuple[str, dict]: tuple of tool name and parameters """ if 'function_call' not in response or response['function_call'] == {}: return None, None function_call = response['function_call'] try: # parse directly action = function_call['name'] arguments = json.loads(function_call['arguments'].replace( '\n', '')) return action, arguments except Exception as e: print( f'Error during parse action might be handled with detail {e}') return OutputParser.handle_fallback(function_call['name'], function_call['arguments'])