|
from cProfile import label |
|
import dataclasses |
|
from distutils.command.check import check |
|
from doctest import Example |
|
import gradio as gr |
|
import os |
|
import sys |
|
import numpy as np |
|
import logging |
|
import torch |
|
import pytorch_seed |
|
import time |
|
|
|
import math |
|
import tempfile |
|
from typing import Optional, Tuple, Union |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
from loguru import logger |
|
from PIL import Image |
|
from torch import Tensor |
|
from torchaudio.backend.common import AudioMetaData |
|
|
|
from df import config |
|
from df.enhance import enhance, init_df, load_audio, save_audio |
|
from df.io import resample |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True) |
|
model = model.to(device=device).eval() |
|
|
|
fig_noisy: plt.Figure |
|
fig_enh: plt.Figure |
|
ax_noisy: plt.Axes |
|
ax_enh: plt.Axes |
|
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4)) |
|
fig_noisy.set_tight_layout(True) |
|
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4)) |
|
fig_enh.set_tight_layout(True) |
|
|
|
NOISES = { |
|
"None": None, |
|
"Kitchen": "samples/dkitchen.wav", |
|
"Living Room": "samples/dliving.wav", |
|
"River": "samples/nriver.wav", |
|
"Cafe": "samples/scafe.wav", |
|
} |
|
|
|
|
|
from xml.sax import saxutils |
|
from bark.api import generate_with_settings |
|
from bark.api import save_as_prompt |
|
from util.settings import Settings |
|
|
|
|
|
from bark import SAMPLE_RATE |
|
from cloning.clonevoice import clone_voice |
|
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode |
|
from scipy.io.wavfile import write as write_wav |
|
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml |
|
from datetime import datetime |
|
from tqdm.auto import tqdm |
|
from util.helper import create_filename, add_id3_tag |
|
from swap_voice import swap_voice_from_audio |
|
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics |
|
from training.train import training_prepare_files, train |
|
|
|
|
|
|
|
|
|
def mix_at_snr(clean, noise, snr, eps=1e-10): |
|
"""Mix clean and noise signal at a given SNR. |
|
Args: |
|
clean: 1D Tensor with the clean signal to mix. |
|
noise: 1D Tensor of shape. |
|
snr: Signal to noise ratio. |
|
Returns: |
|
clean: 1D Tensor with gain changed according to the snr. |
|
noise: 1D Tensor with the combined noise channels. |
|
mix: 1D Tensor with added clean and noise signals. |
|
""" |
|
clean = torch.as_tensor(clean).mean(0, keepdim=True) |
|
noise = torch.as_tensor(noise).mean(0, keepdim=True) |
|
if noise.shape[1] < clean.shape[1]: |
|
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1])))) |
|
max_start = int(noise.shape[1] - clean.shape[1]) |
|
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0 |
|
logger.debug(f"start: {start}, {clean.shape}") |
|
noise = noise[:, start : start + clean.shape[1]] |
|
E_speech = torch.mean(clean.pow(2)) + eps |
|
E_noise = torch.mean(noise.pow(2)) |
|
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps) |
|
noise = noise / K |
|
mixture = clean + noise |
|
logger.debug("mixture: {mixture.shape}") |
|
assert torch.isfinite(mixture).all() |
|
max_m = mixture.abs().max() |
|
if max_m > 1: |
|
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}") |
|
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m |
|
return clean, noise, mixture |
|
|
|
|
|
def load_audio_gradio( |
|
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int |
|
) -> Optional[Tuple[Tensor, AudioMetaData]]: |
|
if audio_or_file is None: |
|
return None |
|
if isinstance(audio_or_file, str): |
|
if audio_or_file.lower() == "none": |
|
return None |
|
|
|
audio, meta = load_audio(audio_or_file, sr) |
|
else: |
|
meta = AudioMetaData(-1, -1, -1, -1, "") |
|
assert isinstance(audio_or_file, (tuple, list)) |
|
meta.sample_rate, audio_np = audio_or_file |
|
|
|
audio_np = audio_np.reshape(audio_np.shape[0], -1).T |
|
if audio_np.dtype == np.int16: |
|
audio_np = (audio_np / (1 << 15)).astype(np.float32) |
|
elif audio_np.dtype == np.int32: |
|
audio_np = (audio_np / (1 << 31)).astype(np.float32) |
|
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr) |
|
return audio, meta |
|
|
|
|
|
def demo_fn(speech_upl: str, noise_type: str, snr: int, mic_input: str): |
|
if mic_input: |
|
speech_upl = mic_input |
|
sr = config("sr", 48000, int, section="df") |
|
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}") |
|
snr = int(snr) |
|
noise_fn = NOISES[noise_type] |
|
meta = AudioMetaData(-1, -1, -1, -1, "") |
|
max_s = 1000 |
|
if speech_upl is not None: |
|
sample, meta = load_audio(speech_upl, sr) |
|
max_len = max_s * sr |
|
if sample.shape[-1] > max_len: |
|
start = torch.randint(0, sample.shape[-1] - max_len, ()).item() |
|
sample = sample[..., start : start + max_len] |
|
else: |
|
sample, meta = load_audio("samples/p232_013_clean.wav", sr) |
|
sample = sample[..., : max_s * sr] |
|
if sample.dim() > 1 and sample.shape[0] > 1: |
|
assert ( |
|
sample.shape[1] > sample.shape[0] |
|
), f"Expecting channels first, but got {sample.shape}" |
|
sample = sample.mean(dim=0, keepdim=True) |
|
logger.info(f"Loaded sample with shape {sample.shape}") |
|
if noise_fn is not None: |
|
noise, _ = load_audio(noise_fn, sr) |
|
logger.info(f"Loaded noise with shape {noise.shape}") |
|
_, _, sample = mix_at_snr(sample, noise, snr) |
|
logger.info("Start denoising audio") |
|
enhanced = enhance(model, df, sample) |
|
logger.info("Denoising finished") |
|
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0) |
|
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1) |
|
enhanced = enhanced * lim |
|
if meta.sample_rate != sr: |
|
enhanced = resample(enhanced, sr, meta.sample_rate) |
|
sample = resample(sample, sr, meta.sample_rate) |
|
sr = meta.sample_rate |
|
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name |
|
save_audio(enhanced_wav, enhanced, sr) |
|
logger.info(f"saved audios: {noisy_wav}, {enhanced_wav}") |
|
ax_noisy.clear() |
|
ax_enh.clear() |
|
|
|
|
|
return enhanced_wav |
|
|
|
|
|
def specshow( |
|
spec, |
|
ax=None, |
|
title=None, |
|
xlabel=None, |
|
ylabel=None, |
|
sr=48000, |
|
n_fft=None, |
|
hop=None, |
|
t=None, |
|
f=None, |
|
vmin=-100, |
|
vmax=0, |
|
xlim=None, |
|
ylim=None, |
|
cmap="inferno", |
|
): |
|
"""Plots a spectrogram of shape [F, T]""" |
|
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec |
|
if ax is not None: |
|
set_title = ax.set_title |
|
set_xlabel = ax.set_xlabel |
|
set_ylabel = ax.set_ylabel |
|
set_xlim = ax.set_xlim |
|
set_ylim = ax.set_ylim |
|
else: |
|
ax = plt |
|
set_title = plt.title |
|
set_xlabel = plt.xlabel |
|
set_ylabel = plt.ylabel |
|
set_xlim = plt.xlim |
|
set_ylim = plt.ylim |
|
if n_fft is None: |
|
if spec.shape[0] % 2 == 0: |
|
n_fft = spec.shape[0] * 2 |
|
else: |
|
n_fft = (spec.shape[0] - 1) * 2 |
|
hop = hop or n_fft // 4 |
|
if t is None: |
|
t = np.arange(0, spec_np.shape[-1]) * hop / sr |
|
if f is None: |
|
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000 |
|
im = ax.pcolormesh( |
|
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap |
|
) |
|
if title is not None: |
|
set_title(title) |
|
if xlabel is not None: |
|
set_xlabel(xlabel) |
|
if ylabel is not None: |
|
set_ylabel(ylabel) |
|
if xlim is not None: |
|
set_xlim(xlim) |
|
if ylim is not None: |
|
set_ylim(ylim) |
|
return im |
|
|
|
|
|
def spec_im( |
|
audio: torch.Tensor, |
|
figsize=(15, 5), |
|
colorbar=False, |
|
colorbar_format=None, |
|
figure=None, |
|
labels=True, |
|
**kwargs, |
|
) -> Image: |
|
audio = torch.as_tensor(audio) |
|
if labels: |
|
kwargs.setdefault("xlabel", "Time [s]") |
|
kwargs.setdefault("ylabel", "Frequency [Hz]") |
|
n_fft = kwargs.setdefault("n_fft", 1024) |
|
hop = kwargs.setdefault("hop", 512) |
|
w = torch.hann_window(n_fft, device=audio.device) |
|
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False) |
|
spec = spec.div_(w.pow(2).sum()) |
|
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10) |
|
kwargs.setdefault("vmax", max(0.0, spec.max().item())) |
|
|
|
if figure is None: |
|
figure = plt.figure(figsize=figsize) |
|
figure.set_tight_layout(True) |
|
if spec.dim() > 2: |
|
spec = spec.squeeze(0) |
|
im = specshow(spec, **kwargs) |
|
if colorbar: |
|
ckwargs = {} |
|
if "ax" in kwargs: |
|
if colorbar_format is None: |
|
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None: |
|
colorbar_format = "%+2.0f dB" |
|
ckwargs = {"ax": kwargs["ax"]} |
|
plt.colorbar(im, format=colorbar_format, **ckwargs) |
|
figure.canvas.draw() |
|
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb()) |
|
|
|
|
|
def toggle(choice): |
|
if choice == "mic": |
|
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) |
|
else: |
|
return gr.update(visible=False, value=None), gr.update(visible=True, value=None) |
|
|
|
|
|
|
|
settings = Settings('config.yaml') |
|
|
|
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
if selected_speaker == 'None': |
|
selected_speaker = None |
|
|
|
voice_name = selected_speaker |
|
|
|
if text == None or len(text) < 1: |
|
if selected_speaker == None: |
|
raise gr.Error('No text entered!') |
|
|
|
|
|
voicedata = _load_history_prompt(voice_name) |
|
audio_arr = codec_decode(voicedata["fine_prompt"]) |
|
result = create_filename(settings.output_folder_path, "None", "extract",".wav") |
|
save_wav(audio_arr, result) |
|
return result |
|
|
|
if batchcount < 1: |
|
batchcount = 1 |
|
|
|
|
|
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) |
|
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) |
|
use_last_generation_as_history = "Use last generation as history" in complete_settings |
|
save_last_generation = "Save generation as Voice" in complete_settings |
|
for l in range(batchcount): |
|
currentseed = seed |
|
if seed != None and seed > 2**32 - 1: |
|
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") |
|
currentseed = None |
|
if currentseed == None or currentseed <= 0: |
|
currentseed = np.random.default_rng().integers(1, 2**32 - 1) |
|
assert(0 < currentseed and currentseed < 2**32) |
|
|
|
progress(0, desc="Generating") |
|
|
|
full_generation = None |
|
|
|
all_parts = [] |
|
complete_text = "" |
|
text = text.lstrip() |
|
if is_ssml(text): |
|
list_speak = create_clips_from_ssml(text) |
|
prev_speaker = None |
|
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): |
|
selected_speaker = clip[0] |
|
|
|
if i > 0 and selected_speaker != prev_speaker: |
|
all_parts += [silencelong.copy()] |
|
prev_speaker = selected_speaker |
|
text = clip[1] |
|
text = saxutils.unescape(text) |
|
if selected_speaker == "None": |
|
selected_speaker = None |
|
|
|
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
if len(list_speak) > 1: |
|
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
all_parts += [audio_array] |
|
else: |
|
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) |
|
for i, text in tqdm(enumerate(texts), total=len(texts)): |
|
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
if quick_generation == True: |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
else: |
|
full_output = use_last_generation_as_history or save_last_generation |
|
if full_output: |
|
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) |
|
else: |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
|
|
|
|
|
|
|
|
if len(texts) > 1: |
|
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): |
|
|
|
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz") |
|
save_as_prompt(voice_name, full_generation) |
|
if use_last_generation_as_history: |
|
selected_speaker = voice_name |
|
|
|
all_parts += [audio_array] |
|
|
|
if text[-1] in "!?.\n" and i > 1: |
|
all_parts += [silenceshort.copy()] |
|
|
|
|
|
result = create_filename(settings.output_folder_path, currentseed, "final",".wav") |
|
save_wav(np.concatenate(all_parts), result) |
|
|
|
add_id3_tag(result, complete_text, selected_speaker, currentseed) |
|
|
|
return result |
|
|
|
|
|
|
|
def save_wav(audio_array, filename): |
|
write_wav(filename, SAMPLE_RATE, audio_array) |
|
|
|
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): |
|
np.savez_compressed( |
|
filename, |
|
semantic_prompt=semantic_prompt, |
|
coarse_prompt=coarse_prompt, |
|
fine_prompt=fine_prompt |
|
) |
|
|
|
|
|
def on_quick_gen_changed(checkbox): |
|
if checkbox == False: |
|
return gr.CheckboxGroup.update(visible=True) |
|
return gr.CheckboxGroup.update(visible=False) |
|
|
|
def delete_output_files(checkbox_state): |
|
if checkbox_state: |
|
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path) |
|
if os.path.exists(outputs_folder): |
|
purgedir(outputs_folder) |
|
return False |
|
|
|
|
|
|
|
def purgedir(parent): |
|
for root, dirs, files in os.walk(parent): |
|
for item in files: |
|
|
|
filespec = os.path.join(root, item) |
|
os.unlink(filespec) |
|
for item in dirs: |
|
|
|
purgedir(os.path.join(root, item)) |
|
|
|
def convert_text_to_ssml(text, selected_speaker): |
|
return build_ssml(text, selected_speaker) |
|
|
|
|
|
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)): |
|
if selected_step == prepare_training_list[0]: |
|
prepare_semantics_from_text() |
|
else: |
|
prepare_wavs_from_semantics() |
|
return None |
|
|
|
|
|
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)): |
|
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt") |
|
train("./training/data/", save_model_epoch, max_epochs) |
|
return None |
|
|
|
|
|
|
|
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): |
|
settings.selected_theme = themes |
|
settings.server_name = input_server_name |
|
settings.server_port = input_server_port |
|
settings.server_share = input_server_public |
|
settings.input_text_desired_length = input_desired_len |
|
settings.input_text_max_length = input_max_len |
|
settings.silence_sentence = input_silence_break |
|
settings.silence_speaker = input_silence_speaker |
|
settings.save() |
|
|
|
def restart(): |
|
global restart_server |
|
restart_server = True |
|
|
|
|
|
def create_version_html(): |
|
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) |
|
versions_html = f""" |
|
python: <span title="{sys.version}">{python_version}</span> |
|
โโขโ |
|
torch: {getattr(torch, '__long_version__',torch.__version__)} |
|
โโขโ |
|
gradio: {gr.__version__} |
|
""" |
|
return versions_html |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
APPTITLE = "Bark Voice Cloning UI" |
|
|
|
|
|
autolaunch = False |
|
|
|
if len(sys.argv) > 1: |
|
autolaunch = "-autolaunch" in sys.argv |
|
|
|
if torch.cuda.is_available() == False: |
|
os.environ['BARK_FORCE_CPU'] = 'True' |
|
logger.warning("No CUDA detected, fallback to CPU!") |
|
|
|
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') |
|
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') |
|
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') |
|
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') |
|
print(f'autolaunch={autolaunch}\n\n') |
|
|
|
|
|
|
|
|
|
print("Preloading Models\n") |
|
preload_models() |
|
|
|
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] |
|
tokenizer_language_list = ["de","en", "pl"] |
|
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"] |
|
|
|
seed = -1 |
|
server_name = settings.server_name |
|
if len(server_name) < 1: |
|
server_name = None |
|
server_port = settings.server_port |
|
if server_port <= 0: |
|
server_port = None |
|
global run_server |
|
global restart_server |
|
|
|
run_server = True |
|
|
|
while run_server: |
|
|
|
speakers_list = [] |
|
|
|
for root, dirs, files in os.walk("./bark/assets/prompts"): |
|
for file in files: |
|
if file.endswith(".npz"): |
|
pathpart = root.replace("./bark/assets/prompts", "") |
|
name = os.path.join(pathpart, file[:-4]) |
|
if name.startswith("/") or name.startswith("\\"): |
|
name = name[1:] |
|
speakers_list.append(name) |
|
|
|
speakers_list = sorted(speakers_list, key=lambda x: x.lower()) |
|
speakers_list.insert(0, 'None') |
|
|
|
print(f'Launching {APPTITLE} Server') |
|
|
|
|
|
|
|
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: |
|
gr.Markdown("# <center>๐ถ๐ถโญ - Bark Voice Cloning</center>") |
|
gr.Markdown("## <center>๐ค - If you like this space, please star my [github repo](https://github.com/KevinWang676/Bark-Voice-Cloning)</center>") |
|
gr.Markdown("### <center>๐ก - Based on [bark-gui](https://github.com/C0untFloyd/bark-gui)</center>") |
|
gr.Markdown(f""" You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a> |
|
or open in [Colab](https://colab.research.google.com/github/KevinWang676/Bark-Voice-Cloning/blob/main/Bark_Voice_Cloning.ipynb) for quick start ๐ P.S. Voice cloning needs a GPU, but TTS doesn't ๐ |
|
""") |
|
|
|
with gr.Tab("๐๏ธ - Clone Voice"): |
|
with gr.Row(): |
|
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
initialname = "/home/user/app/bark/assets/prompts/file" |
|
output_voice = gr.Textbox(label="Filename of trained Voice (do not change the initial name)", lines=1, placeholder=initialname, value=initialname, visible=False) |
|
with gr.Column(): |
|
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1], visible=False) |
|
with gr.Row(): |
|
clone_voice_button = gr.Button("Create Voice", variant="primary") |
|
with gr.Row(): |
|
dummy = gr.Text(label="Progress") |
|
npz_file = gr.File(label=".npz file") |
|
speakers_list.insert(0, npz_file) |
|
|
|
with gr.Tab("๐ต - TTS"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
placeholder = "Enter text here." |
|
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder) |
|
convert_to_ssml_button = gr.Button("Convert Input Text to SSML") |
|
with gr.Column(): |
|
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) |
|
batchcount = gr.Number(label="Batch count", precision=0, value=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") |
|
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose โfileโ if you wanna use the custom voice)") |
|
|
|
with gr.Column(): |
|
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") |
|
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True) |
|
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] |
|
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) |
|
with gr.Column(): |
|
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
tts_create_button = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
hidden_checkbox = gr.Checkbox(visible=False) |
|
button_stop_generation = gr.Button("Stop generation") |
|
with gr.Row(): |
|
output_audio = gr.Audio(label="Generated Audio", type="filepath") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
radio = gr.Radio( |
|
["mic", "file"], value="file", label="How would you like to upload your audio?", visible=False |
|
) |
|
mic_input = gr.Mic(label="Input", type="filepath", visible=False) |
|
audio_file = output_audio |
|
inputs = [ |
|
audio_file, |
|
gr.Dropdown( |
|
label="Add background noise", |
|
choices=list(NOISES.keys()), |
|
value="None", visible =False, |
|
), |
|
gr.Dropdown( |
|
label="Noise Level (SNR)", |
|
choices=["-5", "0", "10", "20"], |
|
value="0", visible =False, |
|
), |
|
mic_input, |
|
] |
|
btn_denoise = gr.Button("Denoise", variant="primary") |
|
with gr.Column(): |
|
outputs = [ |
|
gr.Audio(type="filepath", label="Enhanced audio"), |
|
] |
|
btn_denoise.click(fn=demo_fn, inputs=inputs, outputs=outputs) |
|
radio.change(toggle, radio, [mic_input, audio_file]) |
|
|
|
with gr.Tab("๐ฎ - Voice Conversion"): |
|
with gr.Row(): |
|
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath") |
|
with gr.Row(): |
|
with gr.Column(): |
|
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1]) |
|
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) |
|
with gr.Column(): |
|
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice (Choose โfileโ if you wanna use the custom voice)") |
|
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1) |
|
with gr.Row(): |
|
swap_voice_button = gr.Button("Generate", variant="primary") |
|
with gr.Row(): |
|
output_swap = gr.Audio(label="Generated Audio", type="filepath") |
|
|
|
|
|
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) |
|
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) |
|
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) |
|
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) |
|
|
|
|
|
|
|
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap) |
|
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=[dummy, npz_file]) |
|
|
|
|
|
restart_server = False |
|
try: |
|
barkgui.queue().launch(show_error=True) |
|
except: |
|
restart_server = True |
|
run_server = False |
|
try: |
|
while restart_server == False: |
|
time.sleep(1.0) |
|
except (KeyboardInterrupt, OSError): |
|
print("Keyboard interruption in main thread... closing server.") |
|
run_server = False |
|
barkgui.close() |
|
|
|
|