File size: 5,393 Bytes
9074b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os 
import torch
import numpy as np
from scipy.io import savemat, loadmat
from yacs.config import CfgNode as CN
from scipy.signal import savgol_filter

import safetensors
import safetensors.torch 

from src.audio2pose_models.audio2pose import Audio2Pose
from src.audio2exp_models.networks import SimpleWrapperV2 
from src.audio2exp_models.audio2exp import Audio2Exp
from src.utils.safetensor_helper import load_x_from_safetensor  

def load_cpk(checkpoint_path, model=None, optimizer=None, device="cpu"):
    checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
    if model is not None:
        model.load_state_dict(checkpoint['model'])
    if optimizer is not None:
        optimizer.load_state_dict(checkpoint['optimizer'])

    return checkpoint['epoch']

class Audio2Coeff():

    def __init__(self, sadtalker_path, device):
        #load config
        fcfg_pose = open(sadtalker_path['audio2pose_yaml_path'])
        cfg_pose = CN.load_cfg(fcfg_pose)
        cfg_pose.freeze()
        fcfg_exp = open(sadtalker_path['audio2exp_yaml_path'])
        cfg_exp = CN.load_cfg(fcfg_exp)
        cfg_exp.freeze()

        # load audio2pose_model
        self.audio2pose_model = Audio2Pose(cfg_pose, None, device=device)
        self.audio2pose_model = self.audio2pose_model.to(device)
        self.audio2pose_model.eval()
        for param in self.audio2pose_model.parameters():
            param.requires_grad = False 
        
        try:
            if sadtalker_path['use_safetensor']:
                checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint'])
                self.audio2pose_model.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2pose'))
            else:
                load_cpk(sadtalker_path['audio2pose_checkpoint'], model=self.audio2pose_model, device=device)
        except:
            raise Exception("Failed in loading audio2pose_checkpoint")

        # load audio2exp_model
        netG = SimpleWrapperV2()
        netG = netG.to(device)
        for param in netG.parameters():
            netG.requires_grad = False
        netG.eval()
        try:
            if sadtalker_path['use_safetensor']:
                checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint'])
                netG.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2exp'))
            else:
                load_cpk(sadtalker_path['audio2exp_checkpoint'], model=netG, device=device)
        except:
            raise Exception("Failed in loading audio2exp_checkpoint")
        self.audio2exp_model = Audio2Exp(netG, cfg_exp, device=device, prepare_training_loss=False)
        self.audio2exp_model = self.audio2exp_model.to(device)
        for param in self.audio2exp_model.parameters():
            param.requires_grad = False
        self.audio2exp_model.eval()
 
        self.device = device

    def generate(self, batch, coeff_save_dir, pose_style, ref_pose_coeff_path=None):

        with torch.no_grad():
            #test
            results_dict_exp= self.audio2exp_model.test(batch)
            exp_pred = results_dict_exp['exp_coeff_pred']                         #bs T 64

            #for class_id in  range(1):
            #class_id = 0#(i+10)%45
            #class_id = random.randint(0,46)                                   #46 styles can be selected 
            batch['class'] = torch.LongTensor([pose_style]).to(self.device)
            results_dict_pose = self.audio2pose_model.test(batch) 
            pose_pred = results_dict_pose['pose_pred']                        #bs T 6

            pose_len = pose_pred.shape[1]
            if pose_len<13: 
                pose_len = int((pose_len-1)/2)*2+1
                pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), pose_len, 2, axis=1)).to(self.device)
            else:
                pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), 13, 2, axis=1)).to(self.device) 
            
            coeffs_pred = torch.cat((exp_pred, pose_pred), dim=-1)            #bs T 70

            coeffs_pred_numpy = coeffs_pred[0].clone().detach().cpu().numpy() 

            if ref_pose_coeff_path is not None: 
                 coeffs_pred_numpy = self.using_refpose(coeffs_pred_numpy, ref_pose_coeff_path)
        
            savemat(os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])),  
                    {'coeff_3dmm': coeffs_pred_numpy})

            return os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name']))
    
    def using_refpose(self, coeffs_pred_numpy, ref_pose_coeff_path):
        num_frames = coeffs_pred_numpy.shape[0]
        refpose_coeff_dict = loadmat(ref_pose_coeff_path)
        refpose_coeff = refpose_coeff_dict['coeff_3dmm'][:,64:70]
        refpose_num_frames = refpose_coeff.shape[0]
        if refpose_num_frames<num_frames:
            div = num_frames//refpose_num_frames
            re = num_frames%refpose_num_frames
            refpose_coeff_list = [refpose_coeff for i in range(div)]
            refpose_coeff_list.append(refpose_coeff[:re, :])
            refpose_coeff = np.concatenate(refpose_coeff_list, axis=0)

        #### relative head pose
        coeffs_pred_numpy[:, 64:70] = coeffs_pred_numpy[:, 64:70] + ( refpose_coeff[:num_frames, :] - refpose_coeff[0:1, :] )
        return coeffs_pred_numpy