File size: 7,465 Bytes
9074b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch, uuid
import os, sys, shutil, platform
from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff  
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data

from src.utils.init_path import init_path

from pydub import AudioSegment


def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
    mp3_file = AudioSegment.from_file(file=mp3_filename)
    mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")


class SadTalker():

    def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):

        if torch.cuda.is_available():
            device = "cuda"
        elif platform.system() == 'Darwin': # macos 
            device = "mps"
        else:
            device = "cpu"
        
        self.device = device

        os.environ['TORCH_HOME']= checkpoint_path

        self.checkpoint_path = checkpoint_path
        self.config_path = config_path
      

    def test(self, source_image, driven_audio, preprocess='crop', 

        still_mode=False,  use_enhancer=False, batch_size=1, size=256, 

        pose_style = 0, 

        facerender='facevid2vid',

        exp_scale=1.0, 

        use_ref_video = False,

        ref_video = None,

        ref_info = None,

        use_idle_mode = False,

        length_of_audio = 0, use_blink=True,

        result_dir='./results/'):

        self.sadtalker_paths = init_path(self.checkpoint_path, self.config_path, size, False, preprocess)
        print(self.sadtalker_paths)
            
        self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device)
        self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device)
        
        if facerender == 'facevid2vid' and self.device != 'mps':
            self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)
        elif facerender == 'pirender' or self.device == 'mps':
            self.animate_from_coeff = AnimateFromCoeff_PIRender(self.sadtalker_paths, self.device)
            facerender = 'pirender'
        else:
            raise(RuntimeError('Unknown model: {}'.format(facerender)))
            

        time_tag = str(uuid.uuid4())
        save_dir = os.path.join(result_dir, time_tag)
        os.makedirs(save_dir, exist_ok=True)

        input_dir = os.path.join(save_dir, 'input')
        os.makedirs(input_dir, exist_ok=True)

        print(source_image)
        pic_path = os.path.join(input_dir, os.path.basename(source_image)) 
        shutil.move(source_image, input_dir)

        if driven_audio is not None and os.path.isfile(driven_audio):
            audio_path = os.path.join(input_dir, os.path.basename(driven_audio))  

            #### mp3 to wav
            if '.mp3' in audio_path:
                mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
                audio_path = audio_path.replace('.mp3', '.wav')
            else:
                shutil.move(driven_audio, input_dir)

        elif use_idle_mode:
            audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav') ## generate audio from this new audio_path
            from pydub import AudioSegment
            one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio)  #duration in milliseconds
            one_sec_segment.export(audio_path, format="wav")
        else:
            print(use_ref_video, ref_info)
            assert use_ref_video == True and ref_info == 'all'

        if use_ref_video and ref_info == 'all': # full ref mode
            ref_video_videoname = os.path.basename(ref_video)
            audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
            print('new audiopath:',audio_path)
            # if ref_video contains audio, set the audio from ref_video.
            cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path)
            os.system(cmd)        

        os.makedirs(save_dir, exist_ok=True)
        
        #crop image and extract 3dmm from image
        first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
        os.makedirs(first_frame_dir, exist_ok=True)
        first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size)
        
        if first_coeff_path is None:
            raise AttributeError("No face is detected")

        if use_ref_video:
            print('using ref video for genreation')
            ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
            ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
            os.makedirs(ref_video_frame_dir, exist_ok=True)
            print('3DMM Extraction for the reference video providing pose')
            ref_video_coeff_path, _, _ =  self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
        else:
            ref_video_coeff_path = None

        if use_ref_video:
            if ref_info == 'pose':
                ref_pose_coeff_path = ref_video_coeff_path
                ref_eyeblink_coeff_path = None
            elif ref_info == 'blink':
                ref_pose_coeff_path = None
                ref_eyeblink_coeff_path = ref_video_coeff_path
            elif ref_info == 'pose+blink':
                ref_pose_coeff_path = ref_video_coeff_path
                ref_eyeblink_coeff_path = ref_video_coeff_path
            elif ref_info == 'all':            
                ref_pose_coeff_path = None
                ref_eyeblink_coeff_path = None
            else:
                raise('error in refinfo')
        else:
            ref_pose_coeff_path = None
            ref_eyeblink_coeff_path = None

        #audio2ceoff
        if use_ref_video and ref_info == 'all':
            coeff_path = ref_video_coeff_path # self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
        else:
            batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \
                idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink) # longer audio?
            coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)

        #coeff2video
        data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \
            preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender)
        return_path = self.animate_from_coeff.generate(data, save_dir,  pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size)
        video_name = data['video_name']
        print(f'The generated video is named {video_name} in {save_dir}')

        del self.preprocess_model
        del self.audio_to_coeff
        del self.animate_from_coeff

        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            
        import gc; gc.collect()
        
        return return_path