kevinwang676's picture
Duplicate from kevinwang676/ChatGLM2-SadTalker
9074b85
import numpy as np
import cv2, os, sys, torch
from tqdm import tqdm
from PIL import Image
# 3dmm extraction
import safetensors
import safetensors.torch
from src.face3d.util.preprocess import align_img
from src.face3d.util.load_mats import load_lm3d
from src.face3d.models import networks
from scipy.io import loadmat, savemat
from src.utils.croper import Preprocesser
import warnings
from src.utils.safetensor_helper import load_x_from_safetensor
warnings.filterwarnings("ignore")
def split_coeff(coeffs):
"""
Return:
coeffs_dict -- a dict of torch.tensors
Parameters:
coeffs -- torch.tensor, size (B, 256)
"""
id_coeffs = coeffs[:, :80]
exp_coeffs = coeffs[:, 80: 144]
tex_coeffs = coeffs[:, 144: 224]
angles = coeffs[:, 224: 227]
gammas = coeffs[:, 227: 254]
translations = coeffs[:, 254:]
return {
'id': id_coeffs,
'exp': exp_coeffs,
'tex': tex_coeffs,
'angle': angles,
'gamma': gammas,
'trans': translations
}
class CropAndExtract():
def __init__(self, sadtalker_path, device):
self.propress = Preprocesser(device)
self.net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
if sadtalker_path['use_safetensor']:
checkpoint = safetensors.torch.load_file(sadtalker_path['checkpoint'])
self.net_recon.load_state_dict(load_x_from_safetensor(checkpoint, 'face_3drecon'))
else:
checkpoint = torch.load(sadtalker_path['path_of_net_recon_model'], map_location=torch.device(device))
self.net_recon.load_state_dict(checkpoint['net_recon'])
self.net_recon.eval()
self.lm3d_std = load_lm3d(sadtalker_path['dir_of_BFM_fitting'])
self.device = device
def generate(self, input_path, save_dir, crop_or_resize='crop', source_image_flag=False, pic_size=256):
pic_name = os.path.splitext(os.path.split(input_path)[-1])[0]
landmarks_path = os.path.join(save_dir, pic_name+'_landmarks.txt')
coeff_path = os.path.join(save_dir, pic_name+'.mat')
png_path = os.path.join(save_dir, pic_name+'.png')
#load input
if not os.path.isfile(input_path):
raise ValueError('input_path must be a valid path to video/image file')
elif input_path.split('.')[-1] in ['jpg', 'png', 'jpeg']:
# loader for first frame
full_frames = [cv2.imread(input_path)]
fps = 25
else:
# loader for videos
video_stream = cv2.VideoCapture(input_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
full_frames.append(frame)
if source_image_flag:
break
x_full_frames= [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
#### crop images as the
if 'crop' in crop_or_resize.lower(): # default crop
x_full_frames, crop, quad = self.propress.crop(x_full_frames, still=True if 'ext' in crop_or_resize.lower() else False, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx
crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad)
elif 'full' in crop_or_resize.lower():
x_full_frames, crop, quad = self.propress.crop(x_full_frames, still=True if 'ext' in crop_or_resize.lower() else False, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx
crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad)
else: # resize mode
oy1, oy2, ox1, ox2 = 0, x_full_frames[0].shape[0], 0, x_full_frames[0].shape[1]
crop_info = ((ox2 - ox1, oy2 - oy1), None, None)
frames_pil = [Image.fromarray(cv2.resize(frame,(pic_size, pic_size))) for frame in x_full_frames]
if len(frames_pil) == 0:
print('No face is detected in the input file')
return None, None
# save crop info
for frame in frames_pil:
cv2.imwrite(png_path, cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))
# 2. get the landmark according to the detected face.
if not os.path.isfile(landmarks_path):
lm = self.propress.predictor.extract_keypoint(frames_pil, landmarks_path)
else:
print(' Using saved landmarks.')
lm = np.loadtxt(landmarks_path).astype(np.float32)
lm = lm.reshape([len(x_full_frames), -1, 2])
if not os.path.isfile(coeff_path):
# load 3dmm paramter generator from Deep3DFaceRecon_pytorch
video_coeffs, full_coeffs = [], []
for idx in tqdm(range(len(frames_pil)), desc='3DMM Extraction In Video:'):
frame = frames_pil[idx]
W,H = frame.size
lm1 = lm[idx].reshape([-1, 2])
if np.mean(lm1) == -1:
lm1 = (self.lm3d_std[:, :2]+1)/2.
lm1 = np.concatenate(
[lm1[:, :1]*W, lm1[:, 1:2]*H], 1
)
else:
lm1[:, -1] = H - 1 - lm1[:, -1]
trans_params, im1, lm1, _ = align_img(frame, lm1, self.lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_t = torch.tensor(np.array(im1)/255., dtype=torch.float32).permute(2, 0, 1).to(self.device).unsqueeze(0)
with torch.no_grad():
full_coeff = self.net_recon(im_t)
coeffs = split_coeff(full_coeff)
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate([
pred_coeff['exp'],
pred_coeff['angle'],
pred_coeff['trans'],
trans_params[2:][None],
], 1)
video_coeffs.append(pred_coeff)
full_coeffs.append(full_coeff.cpu().numpy())
semantic_npy = np.array(video_coeffs)[:,0]
savemat(coeff_path, {'coeff_3dmm': semantic_npy, 'full_3dmm': np.array(full_coeffs)[0]})
return coeff_path, png_path, crop_info