kevinwang676's picture
Upload folder using huggingface_hub
7bbebbe
raw
history blame
6.32 kB
from speaker_encoder.params_model import *
from speaker_encoder.params_data import *
from scipy.interpolate import interp1d
from sklearn.metrics import roc_curve
from torch.nn.utils import clip_grad_norm_
from scipy.optimize import brentq
from torch import nn
import numpy as np
import torch
class SpeakerEncoder(nn.Module):
def __init__(self, device, loss_device):
super().__init__()
self.loss_device = loss_device
# Network defition
self.lstm = nn.LSTM(input_size=mel_n_channels, # 40
hidden_size=model_hidden_size, # 256
num_layers=model_num_layers, # 3
batch_first=True).to(device)
self.linear = nn.Linear(in_features=model_hidden_size,
out_features=model_embedding_size).to(device)
self.relu = torch.nn.ReLU().to(device)
# Cosine similarity scaling (with fixed initial parameter values)
self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device)
self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device)
# Loss
self.loss_fn = nn.CrossEntropyLoss().to(loss_device)
def do_gradient_ops(self):
# Gradient scale
self.similarity_weight.grad *= 0.01
self.similarity_bias.grad *= 0.01
# Gradient clipping
clip_grad_norm_(self.parameters(), 3, norm_type=2)
def forward(self, utterances, hidden_init=None):
"""
Computes the embeddings of a batch of utterance spectrograms.
:param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape
(batch_size, n_frames, n_channels)
:param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers,
batch_size, hidden_size). Will default to a tensor of zeros if None.
:return: the embeddings as a tensor of shape (batch_size, embedding_size)
"""
# Pass the input through the LSTM layers and retrieve all outputs, the final hidden state
# and the final cell state.
out, (hidden, cell) = self.lstm(utterances, hidden_init)
# We take only the hidden state of the last layer
embeds_raw = self.relu(self.linear(hidden[-1]))
# L2-normalize it
embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
return embeds
def similarity_matrix(self, embeds):
"""
Computes the similarity matrix according the section 2.1 of GE2E.
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
utterances_per_speaker, embedding_size)
:return: the similarity matrix as a tensor of shape (speakers_per_batch,
utterances_per_speaker, speakers_per_batch)
"""
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
# Inclusive centroids (1 per speaker). Cloning is needed for reverse differentiation
centroids_incl = torch.mean(embeds, dim=1, keepdim=True)
centroids_incl = centroids_incl.clone() / torch.norm(centroids_incl, dim=2, keepdim=True)
# Exclusive centroids (1 per utterance)
centroids_excl = (torch.sum(embeds, dim=1, keepdim=True) - embeds)
centroids_excl /= (utterances_per_speaker - 1)
centroids_excl = centroids_excl.clone() / torch.norm(centroids_excl, dim=2, keepdim=True)
# Similarity matrix. The cosine similarity of already 2-normed vectors is simply the dot
# product of these vectors (which is just an element-wise multiplication reduced by a sum).
# We vectorize the computation for efficiency.
sim_matrix = torch.zeros(speakers_per_batch, utterances_per_speaker,
speakers_per_batch).to(self.loss_device)
mask_matrix = 1 - np.eye(speakers_per_batch, dtype=np.int)
for j in range(speakers_per_batch):
mask = np.where(mask_matrix[j])[0]
sim_matrix[mask, :, j] = (embeds[mask] * centroids_incl[j]).sum(dim=2)
sim_matrix[j, :, j] = (embeds[j] * centroids_excl[j]).sum(dim=1)
## Even more vectorized version (slower maybe because of transpose)
# sim_matrix2 = torch.zeros(speakers_per_batch, speakers_per_batch, utterances_per_speaker
# ).to(self.loss_device)
# eye = np.eye(speakers_per_batch, dtype=np.int)
# mask = np.where(1 - eye)
# sim_matrix2[mask] = (embeds[mask[0]] * centroids_incl[mask[1]]).sum(dim=2)
# mask = np.where(eye)
# sim_matrix2[mask] = (embeds * centroids_excl).sum(dim=2)
# sim_matrix2 = sim_matrix2.transpose(1, 2)
sim_matrix = sim_matrix * self.similarity_weight + self.similarity_bias
return sim_matrix
def loss(self, embeds):
"""
Computes the softmax loss according the section 2.1 of GE2E.
:param embeds: the embeddings as a tensor of shape (speakers_per_batch,
utterances_per_speaker, embedding_size)
:return: the loss and the EER for this batch of embeddings.
"""
speakers_per_batch, utterances_per_speaker = embeds.shape[:2]
# Loss
sim_matrix = self.similarity_matrix(embeds)
sim_matrix = sim_matrix.reshape((speakers_per_batch * utterances_per_speaker,
speakers_per_batch))
ground_truth = np.repeat(np.arange(speakers_per_batch), utterances_per_speaker)
target = torch.from_numpy(ground_truth).long().to(self.loss_device)
loss = self.loss_fn(sim_matrix, target)
# EER (not backpropagated)
with torch.no_grad():
inv_argmax = lambda i: np.eye(1, speakers_per_batch, i, dtype=np.int)[0]
labels = np.array([inv_argmax(i) for i in ground_truth])
preds = sim_matrix.detach().cpu().numpy()
# Snippet from https://yangcha.github.io/EER-ROC/
fpr, tpr, thresholds = roc_curve(labels.flatten(), preds.flatten())
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
return loss, eer