File size: 6,705 Bytes
5b59d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import importlib
import re

import gradio as gr
import yaml
from gradio.components import Textbox, Dropdown

from inference.m4singer.base_svs_infer import BaseSVSInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
import numpy as np
from inference.m4singer.gradio.share_btn import community_icon_html, loading_icon_html, share_js

class GradioInfer:
    def __init__(self, exp_name, inference_cls, title, description, article, example_inputs):
        self.exp_name = exp_name
        self.title = title
        self.description = description
        self.article = article
        self.example_inputs = example_inputs
        pkg = ".".join(inference_cls.split(".")[:-1])
        cls_name = inference_cls.split(".")[-1]
        self.inference_cls = getattr(importlib.import_module(pkg), cls_name)

    def greet(self, singer, text, notes, notes_duration):
        PUNCS = '。?;:'
        sents = re.split(rf'([{PUNCS}])', text.replace('\n', ','))
        sents_notes = re.split(rf'([{PUNCS}])', notes.replace('\n', ','))
        sents_notes_dur = re.split(rf'([{PUNCS}])', notes_duration.replace('\n', ','))

        if sents[-1] not in list(PUNCS):
            sents = sents + ['']
            sents_notes = sents_notes + ['']
            sents_notes_dur = sents_notes_dur + ['']

        audio_outs = []
        s, n, n_dur = "", "", ""
        for i in range(0, len(sents), 2):
            if len(sents[i]) > 0:
                s += sents[i] + sents[i + 1]
                n += sents_notes[i] + sents_notes[i+1]
                n_dur += sents_notes_dur[i] + sents_notes_dur[i+1]
            if len(s) >= 400 or (i >= len(sents) - 2 and len(s) > 0):
                audio_out = self.infer_ins.infer_once({
                    'spk_name': singer,
                    'text': s,
                    'notes': n,
                    'notes_duration': n_dur,
                })
                audio_out = audio_out * 32767
                audio_out = audio_out.astype(np.int16)
                audio_outs.append(audio_out)
                audio_outs.append(np.zeros(int(hp['audio_sample_rate'] * 0.3)).astype(np.int16))
                s = ""
                n = ""
        audio_outs = np.concatenate(audio_outs)
        return (hp['audio_sample_rate'], audio_outs), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

    def run(self):
        set_hparams(config=f'checkpoints/{self.exp_name}/config.yaml', exp_name=self.exp_name, print_hparams=False)
        infer_cls = self.inference_cls
        self.infer_ins: BaseSVSInfer = infer_cls(hp)
        example_inputs = self.example_inputs
        for i in range(len(example_inputs)):
            singer, text, notes, notes_dur = example_inputs[i].split('<sep>')
            example_inputs[i] = [singer, text, notes, notes_dur]

        singerList = \
            [
            'Tenor-1', 'Tenor-2', 'Tenor-3', 'Tenor-4', 'Tenor-5', 'Tenor-6', 'Tenor-7',
            'Alto-1', 'Alto-2', 'Alto-3', 'Alto-4', 'Alto-5', 'Alto-6', 'Alto-7',
            'Soprano-1', 'Soprano-2', 'Soprano-3',
            'Bass-1',  'Bass-2',  'Bass-3',
            ]

        css = """
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        """
        with gr.Blocks(css=css) as demo:
            gr.HTML("""<div style="text-align: center; margin: 0 auto;">
                          <div
                          style="
                              display: inline-flex;
                              align-items: center;
                              gap: 0.8rem;
                              font-size: 1.75rem;
                          "
                          >
                          <h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 14px;">
                              M4Singer
                          </h1>
                          </div>
                        </div>
                        """
                    )
            gr.Markdown(self.description)
            with gr.Row():
                with gr.Column():
                    singer_l = Dropdown(choices=singerList, value=example_inputs[0][0], label="SingerID", elem_id="inp_singer")
                    inp_text = Textbox(lines=2, placeholder=None, value=example_inputs[0][1], label="input text", elem_id="inp_text")
                    inp_note = Textbox(lines=2, placeholder=None, value=example_inputs[0][2], label="input note", elem_id="inp_note")
                    inp_duration = Textbox(lines=2, placeholder=None, value=example_inputs[0][3], label="input duration", elem_id="inp_duration")
                    generate = gr.Button("Generate Singing Voice from Musical Score")
                with gr.Column():
                    singing_output = gr.Audio(label="Result", type="numpy", elem_id="music-output")

                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=False)
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
                        share_button = gr.Button("滔滔AI,为爱滔滔💕", elem_id="share-btn", visible=False)
            gr.Examples(examples=self.example_inputs,
                        inputs=[singer_l, inp_text, inp_note, inp_duration],
                        outputs=[singing_output, share_button, community_icon, loading_icon],
                        fn=self.greet,
                        cache_examples=True)
            gr.Markdown(self.article)
            generate.click(self.greet,
                               inputs=[singer_l, inp_text, inp_note, inp_duration],
                               outputs=[singing_output, share_button, community_icon, loading_icon],)
        demo.queue().launch(share=True, show_error=True)


if __name__ == '__main__':
    gradio_config = yaml.safe_load(open('inference/m4singer/gradio/gradio_settings.yaml'))
    g = GradioInfer(**gradio_config)
    g.run()