Spaces:
Running
Running
File size: 6,693 Bytes
f350130 8cc745b 5e7e349 f350130 5c47cba f350130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import importlib
import re
import gradio as gr
import yaml
from gradio.components import Textbox, Dropdown
from inference.m4singer.base_svs_infer import BaseSVSInfer
from utils.hparams import set_hparams
from utils.hparams import hparams as hp
import numpy as np
from inference.m4singer.gradio.share_btn import community_icon_html, loading_icon_html, share_js
class GradioInfer:
def __init__(self, exp_name, inference_cls, title, description, article, example_inputs):
self.exp_name = exp_name
self.title = title
self.description = description
self.article = article
self.example_inputs = example_inputs
pkg = ".".join(inference_cls.split(".")[:-1])
cls_name = inference_cls.split(".")[-1]
self.inference_cls = getattr(importlib.import_module(pkg), cls_name)
def greet(self, singer, text, notes, notes_duration):
PUNCS = '。?;:'
sents = re.split(rf'([{PUNCS}])', text.replace('\n', ','))
sents_notes = re.split(rf'([{PUNCS}])', notes.replace('\n', ','))
sents_notes_dur = re.split(rf'([{PUNCS}])', notes_duration.replace('\n', ','))
if sents[-1] not in list(PUNCS):
sents = sents + ['']
sents_notes = sents_notes + ['']
sents_notes_dur = sents_notes_dur + ['']
audio_outs = []
s, n, n_dur = "", "", ""
for i in range(0, len(sents), 2):
if len(sents[i]) > 0:
s += sents[i] + sents[i + 1]
n += sents_notes[i] + sents_notes[i+1]
n_dur += sents_notes_dur[i] + sents_notes_dur[i+1]
if len(s) >= 400 or (i >= len(sents) - 2 and len(s) > 0):
audio_out = self.infer_ins.infer_once({
'spk_name': singer,
'text': s,
'notes': n,
'notes_duration': n_dur,
})
audio_out = audio_out * 32767
audio_out = audio_out.astype(np.int16)
audio_outs.append(audio_out)
audio_outs.append(np.zeros(int(hp['audio_sample_rate'] * 0.3)).astype(np.int16))
s = ""
n = ""
audio_outs = np.concatenate(audio_outs)
return (hp['audio_sample_rate'], audio_outs), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def run(self):
set_hparams(config=f'checkpoints/{self.exp_name}/config.yaml', exp_name=self.exp_name, print_hparams=False)
infer_cls = self.inference_cls
self.infer_ins: BaseSVSInfer = infer_cls(hp)
example_inputs = self.example_inputs
for i in range(len(example_inputs)):
singer, text, notes, notes_dur = example_inputs[i].split('<sep>')
example_inputs[i] = [singer, text, notes, notes_dur]
singerList = \
[
'Tenor-1', 'Tenor-2', 'Tenor-3', 'Tenor-4', 'Tenor-5', 'Tenor-6', 'Tenor-7',
'Alto-1', 'Alto-2', 'Alto-3', 'Alto-4', 'Alto-5', 'Alto-6', 'Alto-7',
'Soprano-1', 'Soprano-2', 'Soprano-3',
'Bass-1', 'Bass-2', 'Bass-3',
]
css = """
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 14px;">
M4Singer
</h1>
</div>
</div>
"""
)
gr.Markdown(self.description)
with gr.Row():
with gr.Column():
singer_l = Dropdown(choices=singerList, value=example_inputs[0][0], label="SingerID", elem_id="inp_singer")
inp_text = Textbox(lines=2, placeholder=None, value=example_inputs[0][1], label="input text", elem_id="inp_text")
inp_note = Textbox(lines=2, placeholder=None, value=example_inputs[0][2], label="input note", elem_id="inp_note")
inp_duration = Textbox(lines=2, placeholder=None, value=example_inputs[0][3], label="input duration", elem_id="inp_duration")
generate = gr.Button("Generate Singing Voice from Musical Score")
with gr.Column():
singing_output = gr.Audio(label="Result", type="numpy", elem_id="music-output")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("滔滔AI,为爱滔滔💕", elem_id="share-btn", visible=False)
gr.Examples(examples=self.example_inputs,
inputs=[singer_l, inp_text, inp_note, inp_duration],
outputs=[singing_output, share_button, community_icon, loading_icon],
fn=self.greet,
cache_examples=True)
gr.Markdown(self.article)
generate.click(self.greet,
inputs=[singer_l, inp_text, inp_note, inp_duration],
outputs=[singing_output, share_button, community_icon, loading_icon],)
demo.queue().launch(show_error=True)
if __name__ == '__main__':
gradio_config = yaml.safe_load(open('inference/m4singer/gradio/gradio_settings.yaml'))
g = GradioInfer(**gradio_config)
g.run()
|