Spaces:
Sleeping
Sleeping
File size: 6,657 Bytes
4ebcd7e d83143d 4ebcd7e 39ccbcc 4ebcd7e 39ccbcc a4e1652 39ccbcc a4e1652 39ccbcc 4ebcd7e cd9cb27 4ebcd7e cd9cb27 4ebcd7e 39ccbcc 4ebcd7e 39ccbcc 4ebcd7e 9b9040f 4ebcd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import torch
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
ckpt_base_en = 'checkpoints/checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/checkpoints/converter'
#device = 'cuda:0'
device = "cpu"
base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')
ckpt_base_zh = 'checkpoints/checkpoints/base_speakers/ZH'
base_speaker_tts_zh = BaseSpeakerTTS(f'{ckpt_base_zh}/config.json', device=device)
base_speaker_tts_zh.load_ckpt(f'{ckpt_base_zh}/checkpoint.pth')
from tts_voice import tts_order_voice
import edge_tts
import gradio as gr
import tempfile
import anyio
def vc_en(text, audio_ref, style_mode):
if style_mode=="default":
source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
else:
source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
def vc_zh(text, audio_ref):
source_se = torch.load(f'{ckpt_base_zh}/zh_default_se.pth').to(device)
save_path = "output.wav"
src_path = "tmp.wav"
base_speaker_tts_zh.tts(text, src_path, speaker='default', language='Chinese', speed=1.0)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
language_dict = tts_order_voice
base_speaker = "base_audio.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)
async def text_to_speech_edge(text, audio_ref, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=tmp_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
app = gr.Blocks()
with app:
gr.Markdown("# <center>🥳💕🎶 OpenVoice 3秒语音情感真实复刻</center>")
gr.Markdown("## <center>🌟 只需3秒语音,一键复刻说话语气及情感,喜怒哀乐、应有尽有! </center>")
gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
with gr.Tab("💕语音情感合成"):
with gr.Row():
with gr.Column():
inp1 = gr.Textbox(lines=3, label="请输入您想转换的英文文本")
inp2 = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")
inp3 = gr.Dropdown(label="请选择一种语音情感", info="🙂default😊friendly🤫whispering😄cheerful😱terrified😡angry😢sad", choices=["default", "friendly", "whispering", "cheerful", "terrified", "angry", "sad"], value="default")
btn1 = gr.Button("开始语音情感真实复刻吧!", variant="primary")
with gr.Column():
out1 = gr.Audio(label="为您合成的专属语音", type="filepath")
btn1.click(vc_en, [inp1, inp2, inp3], out1)
with gr.Tab("🎶中文声音复刻"):
with gr.Row():
with gr.Column():
inp_zh_1 = gr.Textbox(lines=3, label="请输入您想转换的中文文本")
inp_zh_2 = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")
btn_zh = gr.Button("开始语音情感真实复刻吧!", variant="primary")
with gr.Column():
out_zh = gr.Audio(label="为您合成的专属语音", type="filepath")
btn_zh.click(vc_zh, [inp_zh_1, inp_zh_2], out_zh)
with gr.Tab("🌟多语言声音复刻"):
with gr.Row():
with gr.Column():
inp4 = gr.Textbox(lines=3, label="请输入您想转换的任意语言文本")
inp5 = gr.Audio(label="请上传您喜欢的语音文件", type="filepath")
inp6 = gr.Dropdown(choices=list(language_dict.keys()), value=list(language_dict.keys())[15], label="请选择文本对应的语言及说话人")
btn2 = gr.Button("开始语音情感真实复刻吧!", variant="primary")
with gr.Column():
out2 = gr.Audio(label="为您合成的专属语音", type="filepath")
btn2.click(text_to_speech_edge, [inp4, inp5, inp6], out2)
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。Get your OpenAI API Key [here](https://platform.openai.com/api-keys).</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.launch(show_error=True)
|