File size: 18,034 Bytes
6d7e145
 
 
78dcdde
ceb86b8
650decf
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650decf
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78dcdde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650decf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650decf
c359737
 
650decf
 
 
 
 
c359737
650decf
 
 
 
 
 
c359737
650decf
c359737
6d7e145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb86b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from typing import Union

from argparse import ArgumentParser
from pathlib import Path
import subprocess
import librosa
import os

import asyncio
import json
import hashlib
from os import path, getenv

import gradio as gr

import torch

import numpy as np
import librosa

import edge_tts

import config
import util
from infer_pack.models import (
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono
)
from vc_infer_pipeline import VC
    
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21  # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'

high_quality = True

# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
    '--hubert',
    default=getenv('RVC_HUBERT', 'hubert_base.pt'),
    help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
    '--config',
    default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
    help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
    '--api',
    action='store_true',
    help='enable api endpoint'
)
arg_parser.add_argument(
    '--cache-examples',
    action='store_true',
    help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified'  # noqa
)
args = arg_parser.parse_args()

app_css = '''
#model_info img {
    max-width: 100px;
    max-height: 100px;
    float: right;
}

#model_info p {
    margin: unset;
}
'''

app = gr.Blocks(
    theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"),
    css=app_css,
    analytics_enabled=False
)

# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()

# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []

for model_name in multi_cfg.get('models'):
    print(f'Loading model: {model_name}')

    # Load model info
    model_info = json.load(
        open(path.join('model', model_name, 'config.json'), 'r')
    )

    # Load RVC checkpoint
    cpt = torch.load(
        path.join('model', model_name, model_info['model']),
        map_location='cpu'
    )
    tgt_sr = cpt['config'][-1]
    cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0]  # n_spk

    if_f0 = cpt.get('f0', 1)
    net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
    if if_f0 == 1:
        net_g = SynthesizerTrnMs768NSFsid(
            *cpt['config'],
            is_half=util.is_half(config.device)
        )
    else:
        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])

    del net_g.enc_q

    # According to original code, this thing seems necessary.
    print(net_g.load_state_dict(cpt['weight'], strict=False))

    net_g.eval().to(config.device)
    net_g = net_g.half() if util.is_half(config.device) else net_g.float()

    vc = VC(tgt_sr, config)
    
    loaded_models.append(dict(
        name=model_name,
        metadata=model_info,
        vc=vc,
        net_g=net_g,
        if_f0=if_f0,
        target_sr=tgt_sr
    ))
        
print(f'Models loaded: {len(loaded_models)}')

# Edge TTS speakers
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())  # noqa


# Bilibili
def youtube_downloader(
    video_identifier,
    start_time,
    end_time,
    output_filename="track.wav",
    num_attempts=5,
    url_base="",
    quiet=False,
    force=True,
):
    output_path = Path(output_filename)
    if output_path.exists():
        if not force:
            return output_path
        else:
            output_path.unlink()

    quiet = "--quiet --no-warnings" if quiet else ""
    command = f"""
        yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"  # noqa: E501
    """.strip()

    attempts = 0
    while True:
        try:
            _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError:
            attempts += 1
            if attempts == num_attempts:
                return None
        else:
            break

    if output_path.exists():
        return output_path
    else:
        return None

def audio_separated(audio_input, progress=gr.Progress()):
    # start progress
    progress(progress=0, desc="Starting...")
    time.sleep(0.1)

    # check file input
    if audio_input is None:
        # show progress
        for i in progress.tqdm(range(100), desc="Please wait..."):
            time.sleep(0.01)
            
        return (None, None, 'Please input audio.')

    # create filename
    filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
    
    # progress
    progress(progress=0.10, desc="Please wait...")
    
    # make dir output
    os.makedirs("output", exist_ok=True)
    
    # progress
    progress(progress=0.20, desc="Please wait...")
    
    # write
    if high_quality:
        write(filename+".wav", audio_input[0], audio_input[1])
    else:
        write(filename+".mp3", audio_input[0], audio_input[1])
        
    # progress
    progress(progress=0.50, desc="Please wait...")

    # demucs process
    if high_quality:
        command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
    else:
        command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
    
    os.system(command_demucs)
    
    # progress
    progress(progress=0.70, desc="Please wait...")
    
    # remove file audio
    if high_quality:
        command_delete = "rm -v ./"+filename+".wav"
    else:
        command_delete = "rm -v ./"+filename+".mp3"
    
    os.system(command_delete)
    
    # progress
    progress(progress=0.80, desc="Please wait...")
    
    # progress
    for i in progress.tqdm(range(80,100), desc="Please wait..."):
        time.sleep(0.1)

    if high_quality:
        return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
    else:
        return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."

        
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118  # noqa
def vc_func(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    if input_audio is None:
        return (None, 'Please provide input audio.')

    if model_index is None:
        return (None, 'Please select a model.')

    model = loaded_models[model_index]

    # Reference: so-vits
    (audio_samp, audio_npy) = input_audio

    # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
    # Can be change well, we will see
    if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space:
        return (None, 'Input audio is longer than 60 secs.')

    # Bloody hell: https://stackoverflow.com/questions/26921836/
    if audio_npy.dtype != np.float32:  # :thonk:
        audio_npy = (
            audio_npy / np.iinfo(audio_npy.dtype).max
        ).astype(np.float32)

    if len(audio_npy.shape) > 1:
        audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))

    if audio_samp != 16000:
        audio_npy = librosa.resample(
            audio_npy,
            orig_sr=audio_samp,
            target_sr=16000
        )

    pitch_int = int(pitch_adjust)

    resample = (
        0 if resample_option == 'Disable resampling'
        else int(resample_option)
    )

    times = [0, 0, 0]

    checksum = hashlib.sha512()
    checksum.update(audio_npy.tobytes())

    output_audio = model['vc'].pipeline(
        hubert_model,
        model['net_g'],
        model['metadata'].get('speaker_id', 0),
        audio_npy,
        checksum.hexdigest(),
        times,
        pitch_int,
        f0_method,
        path.join('model', model['name'], model['metadata']['feat_index']),
        feat_ratio,
        model['if_f0'],
        filter_radius,
        model['target_sr'],
        resample,
        rms_mix_rate,
        'v2'
    )

    out_sr = (
        resample if resample >= 16000 and model['target_sr'] != resample
        else model['target_sr']
    )

    print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
    return ((out_sr, output_audio), 'Success')


async def edge_tts_vc_func(
    input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    if input_text is None:
        return (None, 'Please provide TTS text.')

    if tts_speaker is None:
        return (None, 'Please select TTS speaker.')

    if model_index is None:
        return (None, 'Please select a model.')

    speaker = tts_speakers_list[tts_speaker]['ShortName']
    (tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
    return vc_func(
        (tts_sr, tts_np),
        model_index,
        pitch_adjust,
        f0_method,
        feat_ratio,
        filter_radius,
        rms_mix_rate,
        resample_option
    )


def update_model_info(model_index):
    if model_index is None:
        return str(
            '### Model info\n'
            'Please select a model from dropdown above.'
        )

    model = loaded_models[model_index]
    model_icon = model['metadata'].get('icon', '')

    return str(
        '### Model info\n'
        '![model icon]({icon})'
        '**{name}**\n\n'
        'Author: {author}\n\n'
        'Source: {source}\n\n'
        '{note}'
    ).format(
        name=model['metadata'].get('name'),
        author=model['metadata'].get('author', 'Anonymous'),
        source=model['metadata'].get('source', 'Unknown'),
        note=model['metadata'].get('note', ''),
        icon=(
            model_icon
            if model_icon.startswith(('http://', 'https://'))
            else '/file/model/%s/%s' % (model['name'], model_icon)
        )
    )


def _example_vc(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    (audio, message) = vc_func(
        input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
        filter_radius, rms_mix_rate, resample_option
    )
    return (
        audio,
        message,
        update_model_info(model_index)
    )


async def _example_edge_tts(
    input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    (audio, message) = await edge_tts_vc_func(
        input_text, model_index, tts_speaker, pitch_adjust, f0_method,
        feat_ratio, filter_radius, rms_mix_rate, resample_option
    )
    return (
        audio,
        message,
        update_model_info(model_index)
    )


with app:
    gr.Markdown(
        '## A simplistic Web interface\n'
        'RVC interface, project based on [RVC-WebUI](https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI)'  # thx noqa
        'A lot of inspiration from what\'s already out there, including [zomehwh/rvc-models](https://huggingface.co/spaces/zomehwh/rvc-models) & [DJQmUKV/rvc-inference](https://huggingface.co/spaces/DJQmUKV/rvc-inference).\n '  # thx noqa
    )

    with gr.Tab("🤗 - B站视频提取声音"):
        with gr.Row():
            with gr.Column():
                ydl_url_input  = gr.Textbox(label="B站视频网址(请填写相应的BV号)", value = "https://www.bilibili.com/video/BV...")
                start = gr.Number(value=0, label="起始时间 (秒)")
                end = gr.Number(value=15, label="结束时间 (秒)")
                ydl_url_submit = gr.Button("提取声音文件吧", variant="primary")
                as_audio_submit = gr.Button("去除背景音吧", variant="primary")
            with gr.Column():
                ydl_audio_output = gr.Audio(label="Audio from Bilibili")
                as_audio_input  = ydl_audio_output
                as_audio_vocals    = gr.Audio(label="Vocal only")
                as_audio_no_vocals = gr.Audio(label="Music only", type="filepath")
                as_audio_message   = gr.Textbox(label="Message", visible=False)
                
    ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output])
    as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)

    with gr.Row():
        with gr.Column():
            with gr.Tab('Audio conversion'):
                input_audio = gr.Audio(label='Input audio')

                vc_convert_btn = gr.Button('Convert', variant='primary')

            with gr.Tab('TTS conversion'):
                tts_input = gr.TextArea(
                    label='TTS input text'
                )
                tts_speaker = gr.Dropdown(
                    [
                        '%s (%s)' % (
                            s['FriendlyName'],
                            s['Gender']
                        )
                        for s in tts_speakers_list
                    ],
                    label='TTS speaker',
                    type='index'
                )

                tts_convert_btn = gr.Button('Convert', variant='primary')

            pitch_adjust = gr.Slider(
                label='Pitch',
                minimum=-24,
                maximum=24,
                step=1,
                value=0
            )
            f0_method = gr.Radio(
                label='f0 methods',
                choices=['pm', 'harvest'],
                value='pm',
                interactive=True
            )

            with gr.Accordion('Advanced options', open=False):
                feat_ratio = gr.Slider(
                    label='Feature ratio',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.6
                )
                filter_radius = gr.Slider(
                    label='Filter radius',
                    minimum=0,
                    maximum=7,
                    step=1,
                    value=3
                )
                rms_mix_rate = gr.Slider(
                    label='Volume envelope mix rate',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1
                )
                resample_rate = gr.Dropdown(
                    [
                        'Disable resampling',
                        '16000',
                        '22050',
                        '44100',
                        '48000'
                    ],
                    label='Resample rate',
                    value='Disable resampling'
                )

        with gr.Column():
            # Model select
            model_index = gr.Dropdown(
                [
                    '%s - %s' % (
                        m['metadata'].get('source', 'Unknown'),
                        m['metadata'].get('name')
                    )
                    for m in loaded_models
                ],
                label='Model',
                type='index'
            )

            # Model info
            with gr.Box():
                model_info = gr.Markdown(
                    '### Model info\n'
                    'Please select a model from dropdown above.',
                    elem_id='model_info'
                )

            output_audio = gr.Audio(label='Output audio')
            output_msg = gr.Textbox(label='Output message')

    multi_examples = multi_cfg.get('examples')
    if (
        multi_examples and
        multi_examples.get('vc') and multi_examples.get('tts_vc')
    ):
        with gr.Accordion('Sweet sweet examples', open=False):
            with gr.Row():
                # VC Example
                if multi_examples.get('vc'):
                    gr.Examples(
                        label='Audio conversion examples',
                        examples=multi_examples.get('vc'),
                        inputs=[
                            input_audio, model_index, pitch_adjust, f0_method,
                            feat_ratio
                        ],
                        outputs=[output_audio, output_msg, model_info],
                        fn=_example_vc,
                        cache_examples=args.cache_examples,
                        run_on_click=args.cache_examples
                    )

                # Edge TTS Example
                if multi_examples.get('tts_vc'):
                    gr.Examples(
                        label='TTS conversion examples',
                        examples=multi_examples.get('tts_vc'),
                        inputs=[
                            tts_input, model_index, tts_speaker, pitch_adjust,
                            f0_method, feat_ratio
                        ],
                        outputs=[output_audio, output_msg, model_info],
                        fn=_example_edge_tts,
                        cache_examples=args.cache_examples,
                        run_on_click=args.cache_examples
                    )

    vc_convert_btn.click(
        vc_func,
        [
            input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
            filter_radius, rms_mix_rate, resample_rate
        ],
        [output_audio, output_msg],
        api_name='audio_conversion'
    )

    tts_convert_btn.click(
        edge_tts_vc_func,
        [
            tts_input, model_index, tts_speaker, pitch_adjust, f0_method,
            feat_ratio, filter_radius, rms_mix_rate, resample_rate
        ],
        [output_audio, output_msg],
        api_name='tts_conversion'
    )

    model_index.change(
        update_model_info,
        inputs=[model_index],
        outputs=[model_info],
        show_progress=False,
        queue=False
    )

app.queue(
    concurrency_count=1,
    max_size=20,
    api_open=args.api
).launch(show_error=True)