File size: 8,973 Bytes
dfe2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356e183
9e726dd
dfe2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7396cb8
dfe2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7396cb8
dfe2bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ded820
dfe2bf3
d8d081f
1b55f9b
d8d081f
dcaa230
bc01a52
dfe2bf3
 
 
 
 
 
 
 
bc01a52
dfe2bf3
bc01a52
 
 
 
a797ecf
 
 
dfe2bf3
 
 
a797ecf
dfe2bf3
 
bc01a52
 
dfe2bf3
 
0485565
dfe2bf3
 
 
bc01a52
7d952f7
dfe2bf3
 
 
 
c48b863
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import os
import subprocess
from pathlib import Path

import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files

from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc


###################################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS
###################################################################
# The Hugging Face Hub repo ID - 在这里修改repo_id,可替换成任何已经训练好的模型!
repo_id = "kevinwang676/talktalkai-qing"

# If None, Uses latest ckpt in the repo
ckpt_name = None

# If None, Uses "kmeans.pt" if it exists in the repo
cluster_model_name = None

# Set the default f0 type to use - use the one it was trained on.
# The default for so-vits-svc-fork is "dio".
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
default_f0_method = "crepe"

# The default ratio of cluster inference to SVC inference.
# If cluster_model_name is not found in the repo, this is set to 0.
default_cluster_infer_ratio = 0.5

# Limit on duration of audio at inference time. increase if you can
# In this parent app, we set the limit with an env var to 30 seconds
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9))
###################################################################

# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
    latest_id = sorted(
        [
            int(Path(x).stem.split("_")[1])
            for x in list_repo_files(repo_id)
            if x.startswith("G_") and x.endswith(".pth")
        ]
    )[-1]
    ckpt_name = f"G_{latest_id}.pth"

cluster_model_name = cluster_model_name or "kmeans.pt"
if cluster_model_name in list_repo_files(repo_id):
    print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}")
    cluster_model_path = hf_hub_download(repo_id, cluster_model_name)
else:
    print(f"Could not find {cluster_model_name} in {repo_id}. Using None")
    cluster_model_path = None
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0

generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speakers = list(hparams.spk.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path)
demucs_model = get_model(DEFAULT_MODEL)


def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
    wav, sr = librosa.load(filename, mono=False, sr=sr)
    wav = torch.tensor(wav)
    ref = wav.mean(0)
    wav = (wav - ref.mean()) / ref.std()
    sources = apply_model(
        model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
    )[0]
    sources = sources * ref.std() + ref.mean()
    # We take just the vocals stem. I know the vocals for this model are at index -1
    # If using different model, check model.sources.index('vocals')
    vocal_wav = sources[-1]
    # I did this because its the same normalization the so-vits model required
    vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
    vocal_wav = vocal_wav.numpy()
    vocal_wav = librosa.to_mono(vocal_wav)
    vocal_wav = vocal_wav.T
    instrumental_wav = sources[:-1].sum(0).numpy().T
    return vocal_wav, instrumental_wav


def download_youtube_clip(
    video_identifier,
    start_time,
    end_time,
    output_filename,
    num_attempts=5,
    url_base="https://www.youtube.com/watch?v=",
    quiet=False,
    force=False,
):
    output_path = Path(output_filename)
    if output_path.exists():
        if not force:
            return output_path
        else:
            output_path.unlink()

    quiet = "--quiet --no-warnings" if quiet else ""
    command = f"""
        yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"  # noqa: E501
    """.strip()

    attempts = 0
    while True:
        try:
            _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError:
            attempts += 1
            if attempts == num_attempts:
                return None
        else:
            break

    if output_path.exists():
        return output_path
    else:
        return None


def predict(
    speaker,
    audio,
    transpose: int = 0,
    auto_predict_f0: bool = False,
    cluster_infer_ratio: float = 0,
    noise_scale: float = 0.4,
    f0_method: str = "crepe",
    db_thresh: int = -40,
    pad_seconds: float = 0.5,
    chunk_seconds: float = 0.5,
    absolute_thresh: bool = False,
):
    audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit)
    audio = model.infer_silence(
        audio.astype(np.float32),
        speaker=speaker,
        transpose=transpose,
        auto_predict_f0=auto_predict_f0,
        cluster_infer_ratio=cluster_infer_ratio,
        noise_scale=noise_scale,
        f0_method=f0_method,
        db_thresh=db_thresh,
        pad_seconds=pad_seconds,
        chunk_seconds=chunk_seconds,
        absolute_thresh=absolute_thresh,
    )
    return model.target_sample, audio


def predict_song_from_yt(
    ytid_or_url,
    start,
    end,
    speaker=speakers[0],
    transpose: int = 0,
    auto_predict_f0: bool = False,
    cluster_infer_ratio: float = 0,
    noise_scale: float = 0.4,
    f0_method: str = "dio",
    db_thresh: int = -40,
    pad_seconds: float = 0.5,
    chunk_seconds: float = 0.5,
    absolute_thresh: bool = False,
):
    end = min(start + duration_limit, end)
    original_track_filepath = download_youtube_clip(
        ytid_or_url,
        start,
        end,
        "track.wav",
        force=True,
        url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=",
    )
    vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath)
    if transpose != 0:
        inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
    cloned_vox = model.infer_silence(
        vox_wav.astype(np.float32),
        speaker=speaker,
        transpose=transpose,
        auto_predict_f0=auto_predict_f0,
        cluster_infer_ratio=cluster_infer_ratio,
        noise_scale=noise_scale,
        f0_method=f0_method,
        db_thresh=db_thresh,
        pad_seconds=pad_seconds,
        chunk_seconds=chunk_seconds,
        absolute_thresh=absolute_thresh,
    )
    full_song = inst_wav + np.expand_dims(cloned_vox, 1)
    return (model.target_sample, full_song), (model.target_sample, cloned_vox)


description = f"""

## <center>🏞️ - TalkTalkAI - Generative AI Text to Speech & Singing Voice Conversion</center>

### <center>🌟 - The singer who collaborates with TalkTalkAI: [一清清清](https://space.bilibili.com/22960772?spm_id_from=333.337.0.0)</center>

### <center>🤗 - Stay tuned. The best is yet to come. Contact us: talktalkai.kevin@gmail.com</center>

""".strip()


interface_yt = gr.Interface(
    predict_song_from_yt,
    inputs=[
        gr.Textbox(
            label="YouTube URL or ID", info="A YouTube URL (or ID) to a song on YouTube you want to clone from"
        ),
        gr.Number(value=0, label="Start Time (seconds)"),
        gr.Number(value=15, label="End Time (seconds)"),
        gr.Dropdown(speakers, value=speakers[0], label="🎤 AI Singer"),
        gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
        gr.Checkbox(False, label="Auto Predict F0", visible=False),
        gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio", visible=False),
        gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale", visible=False),
        gr.Dropdown(
            choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
            value=default_f0_method,
            label="f0 method", visible=False
        ),
    ],
    outputs=[gr.Audio(label="With BGM🎵"), gr.Audio(label="Without BGM🎤")],
    title="🌊💕🎶 - TalkTalkAI",
    description=description,
    examples=[
        ["https://www.youtube.com/watch?v=cn4M-fH08XY", 0, 11.4, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method],
    ],
)
interface = gr.TabbedInterface(
    [interface_yt],
    ["📺 - Clone Song From YouTube"],
)


if __name__ == "__main__":
    interface.launch(show_error=True)