File size: 4,497 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'

from torch import optim as optim
from timm.optim.lookahead import Lookahead

import json


def get_num_layer_for_vit(var_name, num_max_layer):
    if "embed" in var_name:
        return 0
    elif var_name in (
        "cls_token", "mask_token", "pos_embed", "language_pos_embed", 
        "word_embeddings.weight", "vision_cls_token", "vision_pos_embed"
    ):
        return 0
    elif var_name.startswith("patch_embed"):
        return 0
    elif var_name.startswith("rel_pos_bias"):
        return num_max_layer - 1
    elif "layers." in var_name:
        layer_id = int(var_name.split('layers.')[1].split('.')[0])
        return layer_id + 1
    else:
        return num_max_layer - 1


def get_is_head_flag_for_vit(var_name, num_max_layer):
    if var_name.startswith("head"):
        return 1
    # elif var_name.startswith("pooler"):
    #     return 1
    else:
        return 0


class LayerDecayValueAssigner(object):
    def __init__(self, values, scale_handler=None):
        self.scale_handler = scale_handler or get_num_layer_for_vit
        self.values = values

    def get_scale(self, layer_id):
        return self.values[layer_id]

    def get_layer_id(self, var_name):
        return self.scale_handler(var_name, len(self.values))


# The implementation code is modified from Timm (https://github.com/huggingface/pytorch-image-models/tree/main/timm
def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None):
    parameter_group_names = {}
    parameter_group_vars = {}

    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
            group_name = "no_decay"
            this_weight_decay = 0.
        else:
            group_name = "decay"
            this_weight_decay = weight_decay
        if get_num_layer is not None:
            layer_id = get_num_layer(name)
            group_name = "layer_%d_%s" % (layer_id, group_name)
        else:
            layer_id = None

        if group_name not in parameter_group_names:
            if get_layer_scale is not None:
                scale = get_layer_scale(layer_id)
            else:
                scale = 1.

            parameter_group_names[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }
            parameter_group_vars[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }

        parameter_group_vars[group_name]["params"].append(param)
        parameter_group_names[group_name]["params"].append(name)
    print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
    return list(parameter_group_vars.values())


def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if weight_decay and filter_bias_and_bn:
        skip = {}
        if skip_list is not None:
            skip = skip_list
        elif hasattr(model, 'no_weight_decay'):
            skip = model.no_weight_decay()
        parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    opt_args = dict(lr=args.lr, weight_decay=weight_decay)
    if hasattr(args, 'opt_eps') and args.opt_eps is not None:
        opt_args['eps'] = args.opt_eps
    if hasattr(args, 'opt_betas') and args.opt_betas is not None:
        opt_args['betas'] = args.opt_betas

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'adamw':
        optimizer = optim.AdamW(parameters, **opt_args)
    else:
        raise ValueError("Invalid optimizer")

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer