kevinwang676 commited on
Commit
ebc8d11
1 Parent(s): ebe0ac1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +588 -1
app.py CHANGED
@@ -1,2 +1,589 @@
 
 
 
 
1
  import os
2
- exec(os.environ.get('code'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adapted for Zero GPU on Hugging Face
2
+
3
+ import spaces
4
+
5
  import os
6
+ import glob
7
+ import json
8
+ import traceback
9
+ import logging
10
+ import gradio as gr
11
+ import numpy as np
12
+ import librosa
13
+ import torch
14
+ import asyncio
15
+ import ffmpeg
16
+ import subprocess
17
+ import sys
18
+ import io
19
+ import wave
20
+ from datetime import datetime
21
+ #from fairseq import checkpoint_utils
22
+ import urllib.request
23
+ import zipfile
24
+ import shutil
25
+ import gradio as gr
26
+ from textwrap import dedent
27
+ import pprint
28
+ import time
29
+
30
+ import re
31
+ import requests
32
+ import subprocess
33
+ from pathlib import Path
34
+ from scipy.io.wavfile import write
35
+ from scipy.io import wavfile
36
+ import soundfile as sf
37
+
38
+ from lib.infer_pack.models import (
39
+ SynthesizerTrnMs256NSFsid,
40
+ SynthesizerTrnMs256NSFsid_nono,
41
+ SynthesizerTrnMs768NSFsid,
42
+ SynthesizerTrnMs768NSFsid_nono,
43
+ )
44
+ from vc_infer_pipeline import VC
45
+ from config import Config
46
+ config = Config()
47
+ logging.getLogger("numba").setLevel(logging.WARNING)
48
+ spaces_hf = True #os.getenv("SYSTEM") == "spaces"
49
+ force_support = True
50
+
51
+ audio_mode = []
52
+ f0method_mode = []
53
+ f0method_info = ""
54
+
55
+ headers = {
56
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
57
+ }
58
+ pattern = r'//www\.bilibili\.com/video[^"]*'
59
+
60
+ # Download models
61
+
62
+ #urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/hubert_base", "hubert_base.pt")
63
+ urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/rmvpe", "rmvpe.pt")
64
+
65
+ # Get zip name
66
+
67
+ pattern_zip = r"/([^/]+)\.zip$"
68
+
69
+ def get_file_name(url):
70
+ match = re.search(pattern_zip, url)
71
+ if match:
72
+ extracted_string = match.group(1)
73
+ return extracted_string
74
+ else:
75
+ raise Exception("没有找到AI歌手模型的zip压缩包。")
76
+
77
+ # Get RVC models
78
+
79
+ def extract_zip(extraction_folder, zip_name):
80
+ os.makedirs(extraction_folder)
81
+ with zipfile.ZipFile(zip_name, 'r') as zip_ref:
82
+ zip_ref.extractall(extraction_folder)
83
+ os.remove(zip_name)
84
+
85
+ index_filepath, model_filepath = None, None
86
+ for root, dirs, files in os.walk(extraction_folder):
87
+ for name in files:
88
+ if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
89
+ index_filepath = os.path.join(root, name)
90
+
91
+ if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
92
+ model_filepath = os.path.join(root, name)
93
+
94
+ if not model_filepath:
95
+ raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
96
+
97
+ # move model and index file to extraction folder
98
+ os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
99
+ if index_filepath:
100
+ os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
101
+
102
+ # remove any unnecessary nested folders
103
+ for filepath in os.listdir(extraction_folder):
104
+ if os.path.isdir(os.path.join(extraction_folder, filepath)):
105
+ shutil.rmtree(os.path.join(extraction_folder, filepath))
106
+
107
+ # Get username in OpenXLab
108
+
109
+ def get_username(url):
110
+ match_username = re.search(r'models/(.*?)/', url)
111
+ if match_username:
112
+ result = match_username.group(1)
113
+ return result
114
+
115
+ def download_online_model(url, dir_name):
116
+ if url.startswith('https://download.openxlab.org.cn/models/'):
117
+ zip_path = get_username(url) + "-" + get_file_name(url)
118
+ else:
119
+ zip_path = get_file_name(url)
120
+ if not os.path.exists(zip_path):
121
+ try:
122
+ zip_name = url.split('/')[-1]
123
+ extraction_folder = os.path.join(zip_path, dir_name)
124
+ if os.path.exists(extraction_folder):
125
+ raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
126
+
127
+ if 'pixeldrain.com' in url:
128
+ url = f'https://pixeldrain.com/api/file/{zip_name}'
129
+
130
+ urllib.request.urlretrieve(url, zip_name)
131
+
132
+ extract_zip(extraction_folder, zip_name)
133
+ #return f'[√] {dir_name} Model successfully downloaded!'
134
+
135
+ except Exception as e:
136
+ raise Exception(str(e))
137
+
138
+ #Get bilibili BV id
139
+
140
+ def get_bilibili_video_id(url):
141
+ match = re.search(r'/video/([a-zA-Z0-9]+)/', url)
142
+ extracted_value = match.group(1)
143
+ return extracted_value
144
+
145
+ # Get bilibili audio
146
+ def find_first_appearance_with_neighborhood(text, pattern):
147
+ match = re.search(pattern, text)
148
+
149
+ if match:
150
+ return match.group()
151
+ else:
152
+ return None
153
+
154
+ def search_bilibili(keyword):
155
+ if keyword.startswith("BV"):
156
+ req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text
157
+ else:
158
+ req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text
159
+
160
+ video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern)
161
+
162
+ return video_link
163
+
164
+ # Save bilibili audio
165
+
166
+ def get_response(html_url):
167
+ headers = {
168
+ "referer": "https://www.bilibili.com/",
169
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
170
+ }
171
+ response = requests.get(html_url, headers=headers)
172
+ return response
173
+
174
+ def get_video_info(html_url):
175
+ response = get_response(html_url)
176
+ html_data = re.findall('<script>window.__playinfo__=(.*?)</script>', response.text)[0]
177
+ json_data = json.loads(html_data)
178
+ if json_data['data']['dash']['audio'][0]['backupUrl']!=None:
179
+ audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0]
180
+ else:
181
+ audio_url = json_data['data']['dash']['audio'][0]['baseUrl']
182
+ return audio_url
183
+
184
+ def save_audio(title, audio_url):
185
+ audio_content = get_response(audio_url).content
186
+ with open(title + '.wav', mode='wb') as f:
187
+ f.write(audio_content)
188
+ print("音乐内容保存完成")
189
+
190
+
191
+ # Use UVR-HP5/2
192
+
193
+ urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP2.pth", "uvr5/uvr_model/UVR-HP2.pth")
194
+ urllib.request.urlretrieve("https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/UVR-HP5.pth", "uvr5/uvr_model/UVR-HP5.pth")
195
+ #urllib.request.urlretrieve("https://huggingface.co/fastrolling/uvr/resolve/main/Main_Models/5_HP-Karaoke-UVR.pth", "uvr5/uvr_model/UVR-HP5.pth")
196
+
197
+ from uvr5.vr import AudioPre
198
+ weight_uvr5_root = "uvr5/uvr_model"
199
+ uvr5_names = []
200
+ for name in os.listdir(weight_uvr5_root):
201
+ if name.endswith(".pth") or "onnx" in name:
202
+ uvr5_names.append(name.replace(".pth", ""))
203
+
204
+ func = AudioPre
205
+ pre_fun_hp2 = func(
206
+ agg=int(10),
207
+ model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"),
208
+ device="cuda",
209
+ is_half=True,
210
+ )
211
+
212
+ pre_fun_hp5 = func(
213
+ agg=int(10),
214
+ model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"),
215
+ device="cuda",
216
+ is_half=True,
217
+ )
218
+
219
+ # Separate vocals
220
+ @spaces.GPU(duration=80)
221
+ def youtube_downloader(
222
+ video_identifier,
223
+ filename,
224
+ split_model,
225
+ ):
226
+ print(video_identifier)
227
+ video_info = get_video_info(video_identifier)
228
+ print(video_info)
229
+ audio_content = get_response(video_info).content
230
+ with open(filename.strip() + ".wav", mode="wb") as f:
231
+ f.write(audio_content)
232
+ audio_path = filename.strip() + ".wav"
233
+
234
+ # make dir output
235
+ os.makedirs("output", exist_ok=True)
236
+
237
+ if split_model=="UVR-HP2":
238
+ pre_fun = pre_fun_hp2
239
+ else:
240
+ pre_fun = pre_fun_hp5
241
+
242
+ pre_fun._path_audio_(audio_path, f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
243
+ os.remove(filename.strip()+".wav")
244
+
245
+ return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav"
246
+
247
+ # Original code
248
+
249
+ if force_support is False or spaces_hf is True:
250
+ if spaces_hf is True:
251
+ audio_mode = ["Upload audio", "TTS Audio"]
252
+ else:
253
+ audio_mode = ["Input path", "Upload audio", "TTS Audio"]
254
+ f0method_mode = ["pm", "harvest"]
255
+ f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
256
+ else:
257
+ audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
258
+ f0method_mode = ["pm", "harvest", "crepe"]
259
+ f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
260
+
261
+ if os.path.isfile("rmvpe.pt"):
262
+ f0method_mode.insert(2, "rmvpe")
263
+
264
+ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
265
+ def vc_fn(
266
+ vc_audio_mode,
267
+ vc_input,
268
+ vc_upload,
269
+ tts_text,
270
+ tts_voice,
271
+ f0_up_key,
272
+ f0_method,
273
+ index_rate,
274
+ filter_radius,
275
+ resample_sr,
276
+ rms_mix_rate,
277
+ protect,
278
+ ):
279
+ try:
280
+ logs = []
281
+ print(f"Converting using {model_name}...")
282
+ logs.append(f"Converting using {model_name}...")
283
+ yield "\n".join(logs), None
284
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
285
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
286
+ elif vc_audio_mode == "Upload audio":
287
+ if vc_upload is None:
288
+ return "You need to upload an audio", None
289
+ sampling_rate, audio = vc_upload
290
+ duration = audio.shape[0] / sampling_rate
291
+ if duration > 20 and spaces_hf:
292
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
293
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
294
+ if len(audio.shape) > 1:
295
+ audio = librosa.to_mono(audio.transpose(1, 0))
296
+ if sampling_rate != 16000:
297
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
298
+ times = [0, 0, 0]
299
+ f0_up_key = int(f0_up_key)
300
+ audio_opt = vc.pipeline(
301
+ hubert_model,
302
+ net_g,
303
+ 0,
304
+ audio,
305
+ vc_input,
306
+ times,
307
+ f0_up_key,
308
+ f0_method,
309
+ file_index,
310
+ # file_big_npy,
311
+ index_rate,
312
+ if_f0,
313
+ filter_radius,
314
+ tgt_sr,
315
+ resample_sr,
316
+ rms_mix_rate,
317
+ version,
318
+ protect,
319
+ f0_file=None,
320
+ )
321
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
322
+ print(f"{model_name} | {info}")
323
+ logs.append(f"Successfully Convert {model_name}\n{info}")
324
+ yield "\n".join(logs), (tgt_sr, audio_opt)
325
+ except Exception as err:
326
+ info = traceback.format_exc()
327
+ print(info)
328
+ print(f"Error when using {model_name}.\n{str(err)}")
329
+ yield info, None
330
+ return vc_fn
331
+
332
+ def combine_vocal_and_inst(model_name, song_name, song_id, split_model, cover_song, vocal_volume, inst_volume):
333
+ #samplerate, data = wavfile.read(cover_song)
334
+ vocal_path = cover_song #f"output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav"
335
+ output_path = song_name.strip() + "-AI-" + ''.join(os.listdir(f"{model_name}")).strip() + "翻唱版.mp3"
336
+ inst_path = f"output/{split_model}/{song_id}/instrument_{song_id}.wav_10.wav"
337
+ #with wave.open(vocal_path, "w") as wave_file:
338
+ #wave_file.setnchannels(1)
339
+ #wave_file.setsampwidth(2)
340
+ #wave_file.setframerate(samplerate)
341
+ #wave_file.writeframes(data.tobytes())
342
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
343
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
344
+ print(result.stdout.decode())
345
+ return output_path
346
+
347
+ '''
348
+ def load_hubert():
349
+ from fairseq import checkpoint_utils
350
+
351
+ global hubert_model
352
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
353
+ ["hubert_base.pt"],
354
+ suffix="",
355
+ )
356
+ hubert_model = models[0]
357
+ hubert_model = hubert_model.to(config.device)
358
+ if config.is_half:
359
+ hubert_model = hubert_model.half()
360
+ else:
361
+ hubert_model = hubert_model.float()
362
+ hubert_model.eval()
363
+ '''
364
+
365
+ def load_hubert():
366
+ global hubert_model
367
+
368
+ # Load the model state dictionary from the file
369
+ state_dict = torch.load("hubert_base.pt", map_location="cpu")
370
+
371
+ # Initialize the model
372
+ from fairseq.models.hubert import HubertModel
373
+ hubert_model = HubertModel.build_model(state_dict['args'], task=None)
374
+
375
+ # Load the state dictionary into the model
376
+ hubert_model.load_state_dict(state_dict['model'])
377
+
378
+ # Move the model to the desired device
379
+ hubert_model = hubert_model.to("cpu")
380
+
381
+ # Set the model to half precision if required
382
+ if config.is_half:
383
+ hubert_model = hubert_model.half()
384
+ else:
385
+ hubert_model = hubert_model.float()
386
+
387
+ # Set the model to evaluation mode
388
+ hubert_model.eval()
389
+
390
+ load_hubert()
391
+
392
+ def rvc_models(model_name):
393
+ global vc, net_g, index_files, tgt_sr, version
394
+ categories = []
395
+ models = []
396
+ for w_root, w_dirs, _ in os.walk(f"{model_name}"):
397
+ model_count = 1
398
+ for sub_dir in w_dirs:
399
+ pth_files = glob.glob(f"{model_name}/{sub_dir}/*.pth")
400
+ index_files = glob.glob(f"{model_name}/{sub_dir}/*.index")
401
+ if pth_files == []:
402
+ print(f"Model [{model_count}/{len(w_dirs)}]: No Model file detected, skipping...")
403
+ continue
404
+ cpt = torch.load(pth_files[0])
405
+ tgt_sr = cpt["config"][-1]
406
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
407
+ if_f0 = cpt.get("f0", 1)
408
+ version = cpt.get("version", "v1")
409
+ if version == "v1":
410
+ if if_f0 == 1:
411
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
412
+ else:
413
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
414
+ model_version = "V1"
415
+ elif version == "v2":
416
+ if if_f0 == 1:
417
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
418
+ else:
419
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
420
+ model_version = "V2"
421
+ del net_g.enc_q
422
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
423
+ net_g.eval().to(config.device)
424
+ if config.is_half:
425
+ net_g = net_g.half()
426
+ else:
427
+ net_g = net_g.float()
428
+ vc = VC(tgt_sr, config)
429
+ if index_files == []:
430
+ print("Warning: No Index file detected!")
431
+ index_info = "None"
432
+ model_index = ""
433
+ else:
434
+ index_info = index_files[0]
435
+ model_index = index_files[0]
436
+ print(f"Model loaded [{model_count}/{len(w_dirs)}]: {index_files[0]} / {index_info} | ({model_version})")
437
+ model_count += 1
438
+ models.append((index_files[0][:-4], index_files[0][:-4], "", "", model_version, create_vc_fn(index_files[0], tgt_sr, net_g, vc, if_f0, version, model_index)))
439
+ categories.append(["Models", "", models])
440
+ return vc, net_g, index_files, tgt_sr, version
441
+
442
+ #load_hubert()
443
+
444
+ singers="您的专属AI歌手阵容:"
445
+
446
+ @spaces.GPU(duration=60)
447
+ def infer_gpu(hubert_model, net_g, audio, f0_up_key, index_file, tgt_sr, version, f0_file=None):
448
+ return vc.pipeline(
449
+ hubert_model,
450
+ net_g,
451
+ 0,
452
+ audio,
453
+ "",
454
+ [0, 0, 0],
455
+ f0_up_key,
456
+ "rmvpe",
457
+ index_file,
458
+ 0.7,
459
+ 1,
460
+ 3,
461
+ tgt_sr,
462
+ 0,
463
+ 0.25,
464
+ version,
465
+ 0.33,
466
+ f0_file=None,
467
+ )
468
+
469
+ def rvc_infer_music(url, model_name, song_name, split_model, f0_up_key, vocal_volume, inst_volume):
470
+ #load_hubert()
471
+ #print(hubert_model)
472
+ url = url.strip().replace(" ", "")
473
+ model_name = model_name.strip().replace(" ", "")
474
+ if url.startswith('https://download.openxlab.org.cn/models/'):
475
+ zip_path = get_username(url) + "-" + get_file_name(url)
476
+ else:
477
+ zip_path = get_file_name(url)
478
+ global singers
479
+ if model_name not in singers:
480
+ singers = singers+ ' '+ model_name
481
+ download_online_model(url, model_name)
482
+ rvc_models(zip_path)
483
+ song_name = song_name.strip().replace(" ", "")
484
+ video_identifier = search_bilibili(song_name)
485
+ song_id = get_bilibili_video_id(video_identifier)
486
+
487
+ if os.path.isdir(f"./output/{split_model}/{song_id}")==True:
488
+ audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=16000, mono=True)
489
+ song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None)
490
+ else:
491
+ audio, sr = librosa.load(youtube_downloader(video_identifier, song_id, split_model)[0], sr=16000, mono=True)
492
+ song_infer = infer_gpu(hubert_model, net_g, audio, f0_up_key, index_files[0], tgt_sr, version, f0_file=None)
493
+
494
+ sf.write(song_name.strip()+zip_path+"AI翻唱.wav", song_infer, tgt_sr)
495
+ output_full_song = combine_vocal_and_inst(zip_path, song_name.strip(), song_id, split_model, song_name.strip()+zip_path+"AI翻唱.wav", vocal_volume, inst_volume)
496
+ os.remove(song_name.strip()+zip_path+"AI翻唱.wav")
497
+ return output_full_song, singers
498
+
499
+ app = gr.Blocks(theme="JohnSmith9982/small_and_pretty")
500
+ with app:
501
+ with gr.Tab("中文版"):
502
+ gr.Markdown("# <center>🌊💕🎶 滔滔AI,您的专属AI全明星乐团</center>")
503
+ gr.Markdown("## <center>🌟 只需一个歌曲名,全网AI歌手任您选择!随时随地,听我想听!</center>")
504
+ gr.Markdown("### <center>🤗 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);相关问题欢迎在我们的[B站](https://space.bilibili.com/501495851)账号交流!滔滔AI,为爱滔滔!💕</center>")
505
+ with gr.Accordion("💡 一些AI歌手模型链接及使用说明(建议阅读)", open=False):
506
+ _ = f""" 任何能够在线下载的zip压缩包的链接都可以哦(zip压缩包只需包括AI歌手模型的.pth和.index文件,zip压缩包的链接需要以.zip作为后缀):
507
+ * Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip
508
+ * Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip
509
+ * AI派蒙: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip
510
+ * AI孙燕姿: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip
511
+ * AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P)(推荐使用[OpenXLab](https://openxlab.org.cn/models)存放模型zip压缩包): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n
512
+ 说明1:点击“一键开启AI翻唱之旅吧!”按钮即可使用!✨\n
513
+ 说明2:一般情况下,男声演唱的歌曲转换成AI女声演唱需要升调,反之则需要降调;在“歌曲人声升降调”模块可以调整\n
514
+ 说明3:对于同一个AI歌手模型或者同一首歌曲,第一次的运行时间会比较长(大约1分钟),请您耐心等待;之后的运行时间会大大缩短哦!\n
515
+ 说明4:您之前下载过的模型会在“已下载的AI歌手全明星阵容”模块出现\n
516
+ 说明5:此程序使用 [RVC](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) AI歌手模型,感谢[作者](https://space.bilibili.com/5760446)的开源!RVC模型训练教程参见[视频](https://www.bilibili.com/video/BV1mX4y1C7w4)\n
517
+ 🤗 我们正在创建一个完全开源、共建共享的AI歌手模型社区,让更多的人感受到AI音乐的乐趣与魅力!请关注我们的[B站](https://space.bilibili.com/501495851)账号,了解社区的最新进展!合作联系:talktalkai.kevin@gmail.com
518
+ """
519
+ gr.Markdown(dedent(_))
520
+
521
+ with gr.Row():
522
+ with gr.Column():
523
+ inp1 = gr.Textbox(label="请输入AI歌手模型链接", info="模型需要是含有.pth和.index文件的zip压缩包", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip")
524
+ with gr.Column():
525
+ inp2 = gr.Textbox(label="请给您的AI歌手起一个昵称吧", info="可自定义名称,但名称中不能有特殊符号", lines=1, value="AI Taylor", placeholder="AI Taylor")
526
+ inp3 = gr.Textbox(label="请输入您需要AI翻唱的歌曲名", info="如果您对搜索结果不满意,可在歌曲名后加上“无损”或“歌手的名字”等关键词;歌曲名中不能有特殊符号", lines=1, value="小幸运", placeholder="小幸运")
527
+ with gr.Row():
528
+ inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False)
529
+ inp5 = gr.Slider(label="歌曲人声升降调", info="默认为0,+2为升高2个key,以此类推", minimum=-12, maximum=12, value=0, step=1)
530
+ inp6 = gr.Slider(label="歌曲人声音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2)
531
+ inp7 = gr.Slider(label="歌曲伴奏音量调节", info="默认为1,等于0时为静音", minimum=0, maximum=3, value=1, step=0.2)
532
+ btn = gr.Button("一键开启AI翻唱之旅吧!💕", variant="primary")
533
+ with gr.Row():
534
+ output_song = gr.Audio(label="AI歌手为您倾情演绎")
535
+ singer_list = gr.Textbox(label="已下载的AI歌手全明星阵容")
536
+
537
+ btn.click(fn=rvc_infer_music, inputs=[inp1, inp2, inp3, inp4, inp5, inp6, inp7], outputs=[output_song, singer_list])
538
+
539
+ gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
540
+ gr.HTML('''
541
+ <div class="footer">
542
+ <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
543
+ </p>
544
+ </div>
545
+ ''')
546
+ with gr.Tab("EN"):
547
+ gr.Markdown("# <center>🌊💕🎶 TalkTalkAI - Best AI song cover generator ever</center>")
548
+ gr.Markdown("## <center>🌟 Provide the name of a song and our application running on A100 will handle everything else!</center>")
549
+ gr.Markdown("### <center>🤗 [TalkTalkAI](http://www.talktalkai.com/), let everyone enjoy a better life through human-centered AI💕</center>")
550
+ with gr.Accordion("💡 Some AI singers you can try", open=False):
551
+ _ = f""" Any Zip file that you can download online will be fine (The Zip file should contain .pth and .index files):
552
+ * AI Taylor Swift: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip
553
+ * AI Blackpink Lisa: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/Lisa.zip
554
+ * AI Paimon: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/paimon.zip
555
+ * AI Stefanie Sun: https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/syz.zip
556
+ * AI[一清清清](https://www.bilibili.com/video/BV1wV411u74P): https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/yiqing.zip\n
557
+ """
558
+ gr.Markdown(dedent(_))
559
+
560
+ with gr.Row():
561
+ with gr.Column():
562
+ inp1_en = gr.Textbox(label="The Zip file of an AI singer", info="The Zip file should contain .pth and .index files", lines=2, value="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip", placeholder="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/taylor.zip")
563
+ with gr.Column():
564
+ inp2_en = gr.Textbox(label="The name of your AI singer", lines=1, value="AI Taylor", placeholder="AI Taylor")
565
+ inp3_en = gr.Textbox(label="The name of a song", lines=1, value="Hotel California Eagles", placeholder="Hotel California Eagles")
566
+ with gr.Row():
567
+ inp4_en = gr.Dropdown(label="UVR models", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5", visible=False)
568
+ inp5_en = gr.Slider(label="Transpose", info="0 from man to man (or woman to woman); 12 from man to woman and -12 from woman to man.", minimum=-12, maximum=12, value=0, step=1)
569
+ inp6_en = gr.Slider(label="Vocal volume", info="Adjust vocal volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2)
570
+ inp7_en = gr.Slider(label="Instrument volume", info="Adjust instrument volume (Default: 1)", minimum=0, maximum=3, value=1, step=0.2)
571
+ btn_en = gr.Button("Convert💕", variant="primary")
572
+ with gr.Row():
573
+ output_song_en = gr.Audio(label="AI song cover")
574
+ singer_list_en = gr.Textbox(label="The AI singers you have")
575
+
576
+ btn_en.click(fn=rvc_infer_music, inputs=[inp1_en, inp2_en, inp3_en, inp4_en, inp5_en, inp6_en, inp7_en], outputs=[output_song_en, singer_list_en])
577
+
578
+
579
+ gr.HTML('''
580
+ <div class="footer">
581
+ <p>🤗 - Stay tuned! The best is yet to come.
582
+ </p>
583
+ <p>📧 - Contact us: talktalkai.kevin@gmail.com
584
+ </p>
585
+ </div>
586
+ ''')
587
+
588
+ app.queue(max_size=40, api_open=False)
589
+ app.launch(max_threads=400, show_error=True)