Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,364 @@
|
|
1 |
import gradio as gr
|
2 |
-
from audiosr import super_resolution, build_model
|
3 |
import torch
|
4 |
import gc # free up memory
|
5 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@spaces.GPU(duration=300)
|
8 |
def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
@@ -26,12 +382,79 @@ def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
|
26 |
ddim_steps=ddim_steps
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if torch.cuda.is_avaible():
|
30 |
torch.cuda.empty_cache()
|
31 |
|
32 |
gc.collect()
|
33 |
|
34 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
iface = gr.Interface(
|
37 |
fn=inference,
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import gc # free up memory
|
4 |
import spaces
|
5 |
+
import gc
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
from scipy.signal.windows import hann
|
10 |
+
import soundfile as sf
|
11 |
+
import torch
|
12 |
+
import librosa
|
13 |
+
from audiosr import build_model, super_resolution
|
14 |
+
from scipy import signal
|
15 |
+
import pyloudnorm as pyln
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
class AudioUpscaler:
|
19 |
+
"""
|
20 |
+
Upscales audio using the AudioSR model.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, model_name="basic", device="auto"):
|
24 |
+
"""
|
25 |
+
Initializes the AudioUpscaler.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
model_name (str, optional): Name of the AudioSR model to use. Defaults to "basic".
|
29 |
+
device (str, optional): Device to use for inference. Defaults to "auto".
|
30 |
+
"""
|
31 |
+
|
32 |
+
self.model_name = model_name
|
33 |
+
self.device = device
|
34 |
+
self.sr = 48000
|
35 |
+
self.audiosr = None # Model will be loaded in setup()
|
36 |
+
|
37 |
+
def setup(self):
|
38 |
+
"""
|
39 |
+
Loads the AudioSR model.
|
40 |
+
"""
|
41 |
+
|
42 |
+
print("Loading Model...")
|
43 |
+
self.audiosr = build_model(model_name=self.model_name, device=self.device)
|
44 |
+
print("Model loaded!")
|
45 |
+
|
46 |
+
def _match_array_shapes(self, array_1: np.ndarray, array_2: np.ndarray):
|
47 |
+
"""
|
48 |
+
Matches the shapes of two arrays by padding the shorter one with zeros.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
array_1 (np.ndarray): First array.
|
52 |
+
array_2 (np.ndarray): Second array.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
np.ndarray: The first array with a matching shape to the second array.
|
56 |
+
"""
|
57 |
+
|
58 |
+
if (len(array_1.shape) == 1) & (len(array_2.shape) == 1):
|
59 |
+
if array_1.shape[0] > array_2.shape[0]:
|
60 |
+
array_1 = array_1[: array_2.shape[0]]
|
61 |
+
elif array_1.shape[0] < array_2.shape[0]:
|
62 |
+
array_1 = np.pad(
|
63 |
+
array_1,
|
64 |
+
((array_2.shape[0] - array_1.shape[0], 0)),
|
65 |
+
"constant",
|
66 |
+
constant_values=0,
|
67 |
+
)
|
68 |
+
else:
|
69 |
+
if array_1.shape[1] > array_2.shape[1]:
|
70 |
+
array_1 = array_1[:, : array_2.shape[1]]
|
71 |
+
elif array_1.shape[1] < array_2.shape[1]:
|
72 |
+
padding = array_2.shape[1] - array_1.shape[1]
|
73 |
+
array_1 = np.pad(
|
74 |
+
array_1, ((0, 0), (0, padding)), "constant", constant_values=0
|
75 |
+
)
|
76 |
+
return array_1
|
77 |
+
|
78 |
+
def _lr_filter(
|
79 |
+
self, audio, cutoff, filter_type, order=12, sr=48000
|
80 |
+
):
|
81 |
+
"""
|
82 |
+
Applies a low-pass or high-pass filter to the audio.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
audio (np.ndarray): Audio data.
|
86 |
+
cutoff (int): Cutoff frequency.
|
87 |
+
filter_type (str): Filter type ("lowpass" or "highpass").
|
88 |
+
order (int, optional): Filter order. Defaults to 12.
|
89 |
+
sr (int, optional): Sample rate. Defaults to 48000.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
np.ndarray: Filtered audio data.
|
93 |
+
"""
|
94 |
+
|
95 |
+
audio = audio.T
|
96 |
+
nyquist = 0.5 * sr
|
97 |
+
normal_cutoff = cutoff / nyquist
|
98 |
+
b, a = signal.butter(
|
99 |
+
order // 2, normal_cutoff, btype=filter_type, analog=False
|
100 |
+
)
|
101 |
+
sos = signal.tf2sos(b, a)
|
102 |
+
filtered_audio = signal.sosfiltfilt(sos, audio)
|
103 |
+
return filtered_audio.T
|
104 |
+
|
105 |
+
def _process_audio(
|
106 |
+
self,
|
107 |
+
input_file,
|
108 |
+
chunk_size=5.12,
|
109 |
+
overlap=0.1,
|
110 |
+
seed=None,
|
111 |
+
guidance_scale=3.5,
|
112 |
+
ddim_steps=50,
|
113 |
+
multiband_ensemble=True,
|
114 |
+
input_cutoff=14000,
|
115 |
+
):
|
116 |
+
"""
|
117 |
+
Processes the audio in chunks and performs upsampling.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
input_file (str): Path to the input audio file.
|
121 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 5.12.
|
122 |
+
overlap (float, optional): Overlap between chunks in seconds. Defaults to 0.1.
|
123 |
+
seed (int, optional): Random seed. Defaults to None.
|
124 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
125 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
|
126 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
127 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
np.ndarray: Upsampled audio data.
|
131 |
+
"""
|
132 |
+
|
133 |
+
audio, sr = librosa.load(input_file, sr=input_cutoff * 2, mono=False)
|
134 |
+
audio = audio.T
|
135 |
+
sr = input_cutoff * 2
|
136 |
+
|
137 |
+
is_stereo = len(audio.shape) == 2
|
138 |
+
if is_stereo:
|
139 |
+
audio_ch1, audio_ch2 = audio[:, 0], audio[:, 1]
|
140 |
+
else:
|
141 |
+
audio_ch1 = audio
|
142 |
+
|
143 |
+
chunk_samples = int(chunk_size * sr)
|
144 |
+
overlap_samples = int(overlap * chunk_samples)
|
145 |
+
|
146 |
+
output_chunk_samples = int(chunk_size * self.sr)
|
147 |
+
output_overlap_samples = int(overlap * output_chunk_samples)
|
148 |
+
enable_overlap = True if overlap > 0 else False
|
149 |
+
|
150 |
+
def process_chunks(audio):
|
151 |
+
chunks = []
|
152 |
+
original_lengths = []
|
153 |
+
start = 0
|
154 |
+
while start < len(audio):
|
155 |
+
end = min(start + chunk_samples, len(audio))
|
156 |
+
chunk = audio[start:end]
|
157 |
+
if len(chunk) < chunk_samples:
|
158 |
+
original_lengths.append(len(chunk))
|
159 |
+
pad = np.zeros(chunk_samples - len(chunk))
|
160 |
+
chunk = np.concatenate([chunk, pad])
|
161 |
+
else:
|
162 |
+
original_lengths.append(chunk_samples)
|
163 |
+
chunks.append(chunk)
|
164 |
+
start += (
|
165 |
+
chunk_samples - overlap_samples
|
166 |
+
if enable_overlap
|
167 |
+
else chunk_samples
|
168 |
+
)
|
169 |
+
return chunks, original_lengths
|
170 |
+
|
171 |
+
chunks_ch1, original_lengths_ch1 = process_chunks(audio_ch1)
|
172 |
+
if is_stereo:
|
173 |
+
chunks_ch2, original_lengths_ch2 = process_chunks(audio_ch2)
|
174 |
+
|
175 |
+
sample_rate_ratio = self.sr / sr
|
176 |
+
total_length = (
|
177 |
+
len(chunks_ch1) * output_chunk_samples
|
178 |
+
- (len(chunks_ch1) - 1)
|
179 |
+
* (output_overlap_samples if enable_overlap else 0)
|
180 |
+
)
|
181 |
+
reconstructed_ch1 = np.zeros((1, total_length))
|
182 |
+
|
183 |
+
meter_before = pyln.Meter(sr)
|
184 |
+
meter_after = pyln.Meter(self.sr)
|
185 |
+
|
186 |
+
for i, chunk in enumerate(chunks_ch1):
|
187 |
+
loudness_before = meter_before.integrated_loudness(chunk)
|
188 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
|
189 |
+
sf.write(temp_wav.name, chunk, sr)
|
190 |
+
|
191 |
+
out_chunk = super_resolution(
|
192 |
+
self.audiosr,
|
193 |
+
temp_wav.name,
|
194 |
+
seed=seed,
|
195 |
+
guidance_scale=guidance_scale,
|
196 |
+
ddim_steps=ddim_steps,
|
197 |
+
latent_t_per_second=12.8,
|
198 |
+
)
|
199 |
+
out_chunk = out_chunk[0]
|
200 |
+
num_samples_to_keep = int(
|
201 |
+
original_lengths_ch1[i] * sample_rate_ratio
|
202 |
+
)
|
203 |
+
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
|
204 |
+
|
205 |
+
loudness_after = meter_after.integrated_loudness(out_chunk)
|
206 |
+
out_chunk = pyln.normalize.loudness(
|
207 |
+
out_chunk, loudness_after, loudness_before
|
208 |
+
)
|
209 |
+
|
210 |
+
if enable_overlap:
|
211 |
+
actual_overlap_samples = min(
|
212 |
+
output_overlap_samples, num_samples_to_keep
|
213 |
+
)
|
214 |
+
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
|
215 |
+
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
|
216 |
+
|
217 |
+
if i == 0:
|
218 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
219 |
+
elif i < len(chunks_ch1) - 1:
|
220 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
221 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
222 |
+
else:
|
223 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
224 |
+
|
225 |
+
start = i * (
|
226 |
+
output_chunk_samples - output_overlap_samples
|
227 |
+
if enable_overlap
|
228 |
+
else output_chunk_samples
|
229 |
+
)
|
230 |
+
end = start + out_chunk.shape[0]
|
231 |
+
reconstructed_ch1[0, start:end] += out_chunk.flatten()
|
232 |
+
|
233 |
+
if is_stereo:
|
234 |
+
reconstructed_ch2 = np.zeros((1, total_length))
|
235 |
+
for i, chunk in enumerate(chunks_ch2):
|
236 |
+
loudness_before = meter_before.integrated_loudness(chunk)
|
237 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
|
238 |
+
sf.write(temp_wav.name, chunk, sr)
|
239 |
+
|
240 |
+
out_chunk = super_resolution(
|
241 |
+
self.audiosr,
|
242 |
+
temp_wav.name,
|
243 |
+
seed=seed,
|
244 |
+
guidance_scale=guidance_scale,
|
245 |
+
ddim_steps=ddim_steps,
|
246 |
+
latent_t_per_second=12.8,
|
247 |
+
)
|
248 |
+
out_chunk = out_chunk[0]
|
249 |
+
num_samples_to_keep = int(
|
250 |
+
original_lengths_ch2[i] * sample_rate_ratio
|
251 |
+
)
|
252 |
+
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
|
253 |
+
|
254 |
+
loudness_after = meter_after.integrated_loudness(out_chunk)
|
255 |
+
out_chunk = pyln.normalize.loudness(
|
256 |
+
out_chunk, loudness_after, loudness_before
|
257 |
+
)
|
258 |
+
|
259 |
+
if enable_overlap:
|
260 |
+
actual_overlap_samples = min(
|
261 |
+
output_overlap_samples, num_samples_to_keep
|
262 |
+
)
|
263 |
+
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
|
264 |
+
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
|
265 |
+
|
266 |
+
if i == 0:
|
267 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
268 |
+
elif i < len(chunks_ch1) - 1:
|
269 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
270 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
271 |
+
else:
|
272 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
273 |
+
|
274 |
+
start = i * (
|
275 |
+
output_chunk_samples - output_overlap_samples
|
276 |
+
if enable_overlap
|
277 |
+
else output_chunk_samples
|
278 |
+
)
|
279 |
+
end = start + out_chunk.shape[0]
|
280 |
+
reconstructed_ch2[0, start:end] += out_chunk.flatten()
|
281 |
+
|
282 |
+
reconstructed_audio = np.stack(
|
283 |
+
[reconstructed_ch1, reconstructed_ch2], axis=-1
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
reconstructed_audio = reconstructed_ch1
|
287 |
+
|
288 |
+
if multiband_ensemble:
|
289 |
+
low, _ = librosa.load(input_file, sr=48000, mono=False)
|
290 |
+
output = self._match_array_shapes(
|
291 |
+
reconstructed_audio[0].T, low
|
292 |
+
)
|
293 |
+
crossover_freq = input_cutoff - 1000
|
294 |
+
low = self._lr_filter(
|
295 |
+
low.T, crossover_freq, "lowpass", order=10
|
296 |
+
)
|
297 |
+
high = self._lr_filter(
|
298 |
+
output.T, crossover_freq, "highpass", order=10
|
299 |
+
)
|
300 |
+
high = self._lr_filter(
|
301 |
+
high, 23000, "lowpass", order=2
|
302 |
+
)
|
303 |
+
output = low + high
|
304 |
+
else:
|
305 |
+
output = reconstructed_audio[0]
|
306 |
+
|
307 |
+
return output
|
308 |
+
|
309 |
+
def predict(
|
310 |
+
self,
|
311 |
+
input_file,
|
312 |
+
output_folder,
|
313 |
+
ddim_steps=50,
|
314 |
+
guidance_scale=3.5,
|
315 |
+
overlap=0.04,
|
316 |
+
chunk_size=10.24,
|
317 |
+
seed=None,
|
318 |
+
multiband_ensemble=True,
|
319 |
+
input_cutoff=14000,
|
320 |
+
):
|
321 |
+
"""
|
322 |
+
Upscales the audio and saves the result.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
input_file (str): Path to the input audio file.
|
326 |
+
output_folder (str): Path to the output folder.
|
327 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
|
328 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
329 |
+
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
|
330 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
|
331 |
+
seed (int, optional): Random seed. Defaults to None.
|
332 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
333 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
334 |
+
"""
|
335 |
+
if seed == 0:
|
336 |
+
seed = random.randint(0, 2**32 - 1)
|
337 |
+
|
338 |
+
os.makedirs(output_folder, exist_ok=True)
|
339 |
+
waveform = self._process_audio(
|
340 |
+
input_file,
|
341 |
+
chunk_size=chunk_size,
|
342 |
+
overlap=overlap,
|
343 |
+
seed=seed,
|
344 |
+
guidance_scale=guidance_scale,
|
345 |
+
ddim_steps=ddim_steps,
|
346 |
+
multiband_ensemble=multiband_ensemble,
|
347 |
+
input_cutoff=input_cutoff,
|
348 |
+
)
|
349 |
+
|
350 |
+
filename = os.path.splitext(os.path.basename(input_file))[0]
|
351 |
+
output_file = f"{output_folder}/SR_{filename}.wav"
|
352 |
+
sf.write(output_file, data=waveform, samplerate=48000, subtype="PCM_16")
|
353 |
+
print(f"File created: {output_file}")
|
354 |
+
|
355 |
+
# Cleanup
|
356 |
+
del waveform
|
357 |
+
gc.collect()
|
358 |
+
torch.cuda.empty_cache()
|
359 |
+
return output_file
|
360 |
+
|
361 |
+
|
362 |
|
363 |
@spaces.GPU(duration=300)
|
364 |
def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
|
|
382 |
ddim_steps=ddim_steps
|
383 |
)
|
384 |
|
385 |
+
|
386 |
+
|
387 |
+
return (48000, waveform)
|
388 |
+
|
389 |
+
|
390 |
+
def upscale_audio(
|
391 |
+
input_file,
|
392 |
+
output_folder,
|
393 |
+
ddim_steps=20,
|
394 |
+
guidance_scale=3.5,
|
395 |
+
overlap=0.04,
|
396 |
+
chunk_size=10.24,
|
397 |
+
seed=0,
|
398 |
+
multiband_ensemble=True,
|
399 |
+
input_cutoff=14000,
|
400 |
+
):
|
401 |
+
"""
|
402 |
+
Upscales the audio using the AudioSR model.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
input_file (str): Path to the input audio file.
|
406 |
+
output_folder (str): Path to the output folder.
|
407 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 20.
|
408 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
409 |
+
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
|
410 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
|
411 |
+
seed (int, optional): Random seed. Defaults to 0.
|
412 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
413 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
tuple: Upscaled audio data and sample rate.
|
417 |
+
"""
|
418 |
+
upscaler = AudioUpscaler()
|
419 |
+
upscaler.setup()
|
420 |
+
|
421 |
+
output_file = upscaler.predict(
|
422 |
+
input_file,
|
423 |
+
output_folder,
|
424 |
+
ddim_steps=ddim_steps,
|
425 |
+
guidance_scale=guidance_scale,
|
426 |
+
overlap=overlap,
|
427 |
+
chunk_size=chunk_size,
|
428 |
+
seed=seed,
|
429 |
+
multiband_ensemble=multiband_ensemble,
|
430 |
+
input_cutoff=input_cutoff,
|
431 |
+
)
|
432 |
+
|
433 |
if torch.cuda.is_avaible():
|
434 |
torch.cuda.empty_cache()
|
435 |
|
436 |
gc.collect()
|
437 |
|
438 |
+
return output_file
|
439 |
+
|
440 |
+
os.getcwd()
|
441 |
+
gr.Textbox
|
442 |
+
|
443 |
+
iface = gr.Interface(
|
444 |
+
fn=upscale_audio,
|
445 |
+
inputs=[
|
446 |
+
gr.Audio(type="filepath", label="Input Audio"),
|
447 |
+
gr.Textbox(".",label="Out-dir"),
|
448 |
+
gr.Slider(10, 500, value=20, step=1, label="DDIM Steps", info="Number of inference steps (quality/speed)"),
|
449 |
+
gr.Slider(1.0, 20.0, value=3.5, step=0.1, label="Guidance Scale", info="Guidance scale (creativity/fidelity)"),
|
450 |
+
gr.Slider(0.0, 0.5, value=0.04, step=0.01, label="Overlap (s)", info="Overlap between chunks (smooth transitions)"),
|
451 |
+
gr.Slider(5.12, 20.48, value=5.12, step=0.64, label="Chunk Size (s)", info="Chunk size (memory/artifact balance)"),
|
452 |
+
gr.Number(value=0, precision=0, label="Seed", info="Random seed (0 for random)"),
|
453 |
+
gr.Checkbox(label="Multiband Ensemble", value=False, info="Enhance high frequencies"),
|
454 |
+
gr.Slider(500, 15000, value=9000, step=500, label="Crossover Frequency (Hz)", info="For multiband processing", visible=True)
|
455 |
+
],
|
456 |
+
|
457 |
+
|
458 |
|
459 |
iface = gr.Interface(
|
460 |
fn=inference,
|