Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load your quantized model
|
6 |
+
model_name = "khaled123/hf"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
+
|
10 |
+
def chat(input_text):
|
11 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
12 |
+
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1)
|
13 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
return response
|
15 |
+
|
16 |
+
iface = gr.Interface(fn=chat,
|
17 |
+
inputs="text",
|
18 |
+
outputs="text",
|
19 |
+
title="Chatbot",
|
20 |
+
description="A chatbot using a quantized model")
|
21 |
+
|
22 |
+
iface.launch()
|