fffiloni's picture
Migrated from GitHub
d59f323 verified
raw
history blame contribute delete
14.4 kB
import copy
import random
import glob
import json
import logging
import os
import torch
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
import torch.nn.functional as F
from pycocotools.coco import COCO
from pycocotools import mask as mask_utils
from xtuner.registry import BUILDER
from xtuner.dataset.utils import encode_fn
from xtuner.dataset.map_fns import llava_map_fn
from projects.glamm.datasets.utils.utils import expand2square
from projects.glamm.datasets.utils.utils import GCG_QUESTIONS, ANSWER_LIST
from projects.glamm.utils import DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class GCGDataset(Dataset):
def __init__(self,
image_folder,
image_processor,
data_path=None,
tokenizer=None,
template_map_fn=None,
max_length=2048,
pad_image_to_square=False,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=None):
super().__init__()
self.question_templates = GCG_QUESTIONS
if extra_image_processor is not None:
self.extra_image_processor = BUILDER.build(extra_image_processor)
self.num_classes_per_sample = num_classes_per_sample
self.tokenizer = BUILDER.build(tokenizer)
self.tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
)
reg_tokens = ['<bbox>', '<point>']
segmentation_tokens = ['[SEG]']
phrase_tokens = ['<p>', '</p>']
special_tokens = reg_tokens + segmentation_tokens + phrase_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
self.max_length = max_length
self.template_map_fn = BUILDER.build(template_map_fn)
self.text_data = self.json_file_preprocess(data_path, image_folder)
self.image_folder = image_folder
self.image_processor = BUILDER.build(image_processor)
size = self.image_processor.crop_size
if isinstance(size, dict):
self.image_w, self.image_h = size['width'], size['height']
elif isinstance(size, int):
self.image_h, self.image_w = size, size
else:
self.image_w, self.image_h = size
self.pad_image_to_square = pad_image_to_square
self.repeats = repeats
def json_file_preprocess(self, data_path, image_folder=None):
with open(data_path, 'r') as f:
json_data = json.load(f)
return json_data
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
cur_len = 100
length_list.append(cur_len)
return length_list * self.repeats
def __len__(self):
return len(self.text_data) * self.repeats
def real_len(self):
return len(self.text_data)
def _parse_annotations(self, ann_info):
image_path = os.path.join(self.image_folder, ann_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
ann_info['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
ann_info['pixel_values'] = image
caption = ann_info['caption'].strip('"').strip()
masks, phrases, tokens_positive = [], [], []
for word, grounding in ann_info["groundings"].items():
phrases.append(word)
tokens_positive.append(grounding["token_positives"])
# Convert segmentation to binary mask
binary_mask = np.zeros((height, width), dtype=np.uint8)
for rle in grounding["rle_masks"]:
m = mask_utils.decode(rle).astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
masks = sort_by_start_index(masks, phrase_order)
phrases = sort_by_start_index(phrases, phrase_order)
tokens_positive = sort_by_start_index(tokens_positive, phrase_order)
ann_info.update({
'image_path': image_path,
'caption': caption,
'masks': masks,
'phrases': phrases,
'tokens_positive': tokens_positive,
})
return ann_info
def create_conversation(self, caption, tokens_positive):
question = random.choice(self.question_templates).strip()
# Prepare caption with tags
def tag_caption(caption, tokens):
for start, end in sorted(tokens, key=lambda x: x[0], reverse=True):
caption = f"{caption[:start]}<p> {caption[start:end]} </p> [SEG]{caption[end:]}"
return caption
detailed_answer = tag_caption(caption, tokens_positive)
question = 'The <image> provides an overview of the picture.\n' + question
conversation = [{'input': question, 'output': detailed_answer}]
return conversation
def __getitem__(self, index):
index = index % self.real_len()
data_dict = {}
ann_info = copy.deepcopy(self.text_data[index])
ann_info = self._parse_annotations(ann_info)
data_dict['g_pixel_values'] = ann_info.pop('g_pixel_values')
data_dict['pixel_values'] = ann_info.pop('pixel_values')
if len(ann_info['masks']) == 0:
return self.__getitem__(0)
data_dict['masks'] = torch.from_numpy(np.stack(ann_info['masks'], axis=0))
conversation = self.create_conversation(ann_info['caption'], ann_info['tokens_positive'])
data_dict['conversation'] = conversation
result = self.template_map_fn(data_dict)
data_dict.update(result)
result = encode_fn(data_dict, tokenizer=self.tokenizer, max_length=self.max_length, with_image_token=True)
data_dict.update(result)
return data_dict
class GranDfGCGDataset(GCGDataset):
pass
class RefCOCOgGCGDataset(GCGDataset):
def json_file_preprocess(self, data_path, image_folder=None):
with open(data_path, 'r') as f:
json_data = json.load(f)
return [list(line.values())[0] for line in json_data]
def _parse_annotations(self, ann_info):
image_path = os.path.join(self.image_folder, ann_info['img_file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
ann_info['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
ann_info['pixel_values'] = image
caption = ann_info['caption'].strip('"').strip().lower()
masks, phrases, tokens_positive = [], [], []
for detail in ann_info['refs']:
phrase = detail['sentence']
if phrase.lower() in caption:
phrases.append(phrase)
index = caption.find(phrase)
end_index = index + len(phrase) if index != -1 else -1
tokens_positive.append([index, end_index])
binary_mask = np.zeros((height, width), dtype=np.uint8)
for seg in detail["segmentation"]:
rles = mask_utils.frPyObjects([seg], height, width)
m = mask_utils.decode(rles)
m = m.astype(np.uint8)
binary_mask += m.squeeze()
masks.append(binary_mask)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(tokens_positive)), key=lambda x: tokens_positive[x][0])
masks = sort_by_start_index(masks, phrase_order)
phrases = sort_by_start_index(phrases, phrase_order)
tokens_positive = sort_by_start_index(tokens_positive, phrase_order)
ann_info.update({
'image_path': image_path,
'caption': caption,
'masks': masks,
'phrases': phrases,
'tokens_positive': tokens_positive,
})
return ann_info
class OpenPsgGCGDataset(GCGDataset):
pass
class Flickr30kGCGDataset(GCGDataset):
def json_file_preprocess(self, data_path, image_folder=None):
def filter_images(data_infos, min_size):
return [i for i, info in enumerate(data_infos) if min(info['width'], info['height']) >= min_size]
self.coco = COCO(data_path)
self.image_ids = self.coco.getImgIds()
data_infos = []
total_ann_ids = []
removed_img_count = 0
for img_id in self.image_ids:
info = self.coco.loadImgs([img_id])[0]
if len(info['caption'].split(' ')) < 3:
removed_img_count += 1
continue
info['filename'] = info['file_name'].split('_')[-1]
info['height'] = int(info['height'])
info['width'] = int(info['width'])
data_infos.append(info)
ann_ids = self.coco.getAnnIds(imgIds=[img_id])
total_ann_ids.extend(ann_ids)
assert len(set(total_ann_ids)) == len(total_ann_ids), f"Non-unique annotation IDs in '{data_path}'!"
print(f'Removed {removed_img_count} images.')
data_infos = [data_infos[i] for i in filter_images(data_infos, min_size=32)]
return data_infos
def _parse_annotations(self, img_info):
ann_ids = self.coco.getAnnIds(imgIds=img_info['id'])
ann_info = self.coco.loadAnns(ann_ids)
annotations = {'phrases': [], 'caption': img_info['caption'], 'masks': [], 'tokens_positive': []}
image_path = os.path.join(self.image_folder, img_info['file_name'])
image = Image.open(image_path).convert('RGB')
if hasattr(self, 'extra_image_processor'):
g_image = np.array(image) # for grounding
g_image = self.extra_image_processor.apply_image(g_image)
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
annotations['g_pixel_values'] = g_pixel_values
width, height = image.size
if self.pad_image_to_square:
image = expand2square(
image, tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
annotations['pixel_values'] = image
for ann in ann_info:
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0 or ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
tokens_positive = ann['tokens_positive']
phrase = [img_info['caption'][span[0]:span[1]] for span in tokens_positive]
annotations['phrases'].append(phrase[0])
annotations['tokens_positive'].append(tokens_positive[0])
rle = ann['sam_mask']
mask_decoded = mask_utils.decode(rle).astype(np.uint8)
annotations['masks'].append(mask_decoded)
def sort_by_start_index(items, order):
return [items[i] for i in order]
phrase_order = sorted(range(len(annotations['tokens_positive'])), key=lambda x: annotations['tokens_positive'][x][0])
annotations['masks'] = sort_by_start_index(annotations['masks'], phrase_order)
annotations['phrases'] = sort_by_start_index(annotations['phrases'], phrase_order)
annotations['tokens_positive'] = sort_by_start_index(annotations['tokens_positive'], phrase_order)
return annotations
if __name__ == '__main__':
from transformers import CLIPImageProcessor, AutoTokenizer
from third_parts.segment_anything.utils.transforms import ResizeLongestSide
pretrained_model = 'MBZUAI/GLaMM-GranD-Pretrained'
llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path)
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336')
extra_image_processor = dict(
type=ResizeLongestSide,
target_length=1024,
)
from xtuner.utils.templates import PROMPT_TEMPLATE
prompt_template = PROMPT_TEMPLATE.vicuna
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory, template_map_fn
from projects.glamm.datasets.collate_fns.glamm_collate_fn import glamm_collate_fn
dataset = Flickr30kGCGDataset(
image_folder='data/flickr30k/flickr30k-images/',
image_processor=image_processor,
data_path='./data/GranDf/annotations/train/flickr_mergedGT_GCG_train.json',
tokenizer=tokenizer,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=2048,
pad_image_to_square=True,
repeats=1,
num_classes_per_sample=3,
extra_image_processor=extra_image_processor)
for i in range(1000):
print(dataset[i])