kidcoconut commited on
Commit
b831e6f
·
1 Parent(s): 06c8a33

copied demo files from project github task-5-deployment folder

Browse files
.dockerignore ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #--- ignore select binary files/folders
3
+ bin/images/sample*
4
+ bin/models/*.pth
5
+ bin/models/*.zip
6
+ bin/testing
7
+
8
+
9
+ #--- ignore all local data files; preserve/recreate folder structure
10
+ data_host_mount
11
+ data/tiles
12
+ data/wsi
13
+
14
+
15
+ #--- ignore all files within the _ignore folder
16
+ _ignore
17
+
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *model_a* filter=lfs diff=lfs merge=lfs -text
37
+ *.tiff filter=lfs diff=lfs merge=lfs -text
38
+ data/demo_tiles/raw/*.tiff filter=lfs diff=lfs merge=lfs -text
39
+ bin/models/deeplabv3*vhflip30/model_a* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- specific to task5-deploy
2
+ bin/images/sample*
3
+ bin/models/*/*.pth
4
+ bin/models/*.pth
5
+ bin/models/*.zip
6
+ bin/testing
7
+ data/tiles
8
+ data/wsi
9
+ data_host_mount
10
+ _ignore
11
+
12
+
13
+ # Byte-compiled / optimized / DLL files
14
+ __pycache__/
15
+ *.py[cod]
16
+ *$py.class
17
+
18
+ # C extensions
19
+ *.so
20
+
21
+ # Distribution / packaging
22
+ .Python
23
+ build/
24
+ develop-eggs/
25
+ dist/
26
+ downloads/
27
+ eggs/
28
+ .eggs/
29
+ lib/
30
+ lib64/
31
+ parts/
32
+ sdist/
33
+ var/
34
+ wheels/
35
+ pip-wheel-metadata/
36
+ share/python-wheels/
37
+ *.egg-info/
38
+ .installed.cfg
39
+ *.egg
40
+ MANIFEST
41
+
42
+ # PyInstaller
43
+ # Usually these files are written by a python script from a template
44
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
45
+ *.manifest
46
+ *.spec
47
+
48
+ # Installer logs
49
+ pip-log.txt
50
+ pip-delete-this-directory.txt
51
+
52
+ # Unit test / coverage reports
53
+ htmlcov/
54
+ .tox/
55
+ .nox/
56
+ .coverage
57
+ .coverage.*
58
+ .cache
59
+ nosetests.xml
60
+ coverage.xml
61
+ *.cover
62
+ *.py,cover
63
+ .hypothesis/
64
+ .pytest_cache/
65
+
66
+ # Translations
67
+ *.mo
68
+ *.pot
69
+
70
+ # Django stuff:
71
+ *.log
72
+ local_settings.py
73
+ db.sqlite3
74
+ db.sqlite3-journal
75
+
76
+ # Flask stuff:
77
+ instance/
78
+ .webassets-cache
79
+
80
+ # Scrapy stuff:
81
+ .scrapy
82
+
83
+ # Sphinx documentation
84
+ docs/_build/
85
+
86
+ # PyBuilder
87
+ target/
88
+
89
+ # Jupyter Notebook
90
+ .ipynb_checkpoints
91
+
92
+ # IPython
93
+ profile_default/
94
+ ipython_config.py
95
+
96
+ # pyenv
97
+ .python-version
98
+
99
+ # pipenv
100
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
101
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
102
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
103
+ # install all needed dependencies.
104
+ #Pipfile.lock
105
+
106
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
107
+ __pypackages__/
108
+
109
+ # Celery stuff
110
+ celerybeat-schedule
111
+ celerybeat.pid
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # Environments
117
+ .env
118
+ .venv
119
+ env/
120
+ venv/
121
+ ENV/
122
+ env.bak/
123
+ venv.bak/
124
+
125
+ # Spyder project settings
126
+ .spyderproject
127
+ .spyproject
128
+
129
+ # Rope project settings
130
+ .ropeproject
131
+
132
+ # mkdocs documentation
133
+ /site
134
+
135
+ # mypy
136
+ .mypy_cache/
137
+ .dmypy.json
138
+ dmypy.json
139
+
140
+ # Pyre type checker
141
+ .pyre/
Dockerfile ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- PREREQS:
2
+ # - create a local folder dedicated to WSI image mgmt: (docker pwd)/data
3
+ # - populate the folder with raw data, wsi and tiles
4
+ # - docker run --name <name> -v <local folder>
5
+
6
+ #--- utilize a light linux distro for python apps
7
+ FROM python:3.10.9-slim-bullseye
8
+
9
+ #--- copy only the requirements.txt file
10
+ #--- set docker image working directory to /app
11
+ #--- Not: this is reorg'd in an attempt to reduce the rebuilding of layers
12
+ COPY ./requirements.txt /app/requirements.txt
13
+
14
+ #--- set docker image working directory to /app
15
+ WORKDIR /app
16
+
17
+ #--- install all lib dependencies into the image
18
+ RUN pip3 install -r ./requirements.txt
19
+ RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
20
+
21
+ #--- copy all files from the local pwd to the docker image /app folder
22
+ #--- .dockerignore: ensure no local data folders or files (images) are copied into the docker image/container
23
+ COPY . /app
24
+
25
+ #--- for streamlit; external 49400; internal 39400
26
+ # localExec: (from root folder) streamlit run app.py --server.port=39400 --server.maxUploadSize=2000
27
+ EXPOSE 49400
28
+ #CMD ["streamlit", "run", "app.py", "--server.port=39400", "--server.maxUploadSize=2000"]
29
+
30
+
31
+ #--- for fastapi; external 49500; internal 39500
32
+ # localExec: (from root folder) uvicorn main:app --reload --workers 1 --host 0.0.0.0 --port 39500
33
+ EXPOSE 49500
34
+ #CMD ["uvicorn", "main:app", "--reload", "--host=0.0.0.0", "--port=39500"]
35
+
36
+ #--- start streamlit and fastapi from a helper utility script
37
+ #CMD ./util_startLocal_streamlitFastApi.sh
38
+ CMD ./util_dockerPreRun.sh
39
+
40
+
41
+ #--- to build/rebuild the image; make sure you stop and remove the container if you are replacing/upgrading; or change the version tag# from 0.1
42
+ # docker build -t img_stm_omdenasaudi_hcc:0.1 .
43
+
44
+ #--- to tag the image prior to push to DockerHub; docker login and then register user/image:tag
45
+ #--- to push this image to DockerHub, example based on the repo: kidcoconut73/img_stm_omdenasaudi_hcc
46
+ # docker tag img_omdenasaudi_hcc:0.1 kidcoconut73/img_stm_omdenasaudi_hcc:demo
47
+ # docker tag img_omdenasaudi_hcc:0.1 kidcoconut73/img_stm_omdenasaudi_hcc:0.1
48
+ # docker push kidcoconut73/img_stm_omdenasaudi_hcc:demo
49
+
50
+ #--- to run the container from the image; specific port mapping (-p) vs any available port mapping (-P)
51
+ # docker run -p 49400:39400 -p 49500:39500 --name ctr_stmOmdenaSaudiHcc -v ./data:/app/data img_stm_omdenasaudi_hcc:0.1
52
+ # docker run -p 49400:39400 -p 49500:39500 --name ctr_stmOmdenaSaudiHcc img_stm_omdenasaudi_hcc:0.1
53
+ # docker run -P --name ctr_stmOmdenaHcc img_stm_omdenasaudi_hcc:0.1 #--- open all ports defined by Docker EXPOSE
54
+
55
+ #--- ISSUE: uvicorn bug does not allow ctl-C break of fastapi through terminal
56
+ #--- WORKAROUND: you have to run a docker or docker compose kill cmd; eg docker kill <ctr_name>
57
+
58
+
59
+ #--- Docker build log
60
+ # from python:3.10.9-slim-bullseye size: 4.21gb time: >yyys
README.md CHANGED
@@ -6,6 +6,7 @@ colorTo: green
6
  sdk: docker
7
  pinned: false
8
  license: mit
 
9
  ---
10
 
11
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
6
  sdk: docker
7
  pinned: false
8
  license: mit
9
+ app_port: 49400
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
__init__.py ADDED
File without changes
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ toExecute: (from root app folder) ... streamlit run app.py
3
+ '''
4
+ import streamlit as st
5
+ #from uix import lit_sidebar as lit_sideBar
6
+ import uix.lit_sidebar as litSideBar
7
+
8
+
9
+ #--- streamlit: specify title and logo
10
+ st.set_page_config(
11
+ page_title='Omdena Saudi Arabia - Liver HCC Diagnosis with XAI',
12
+ #page_icon='https://cdn.freebiesupply.com/logos/thumbs/1x/nvidia-logo.png',
13
+ layout="wide")
14
+ st.header("Omdena Saudi Arabia - Liver HCC Diagnosis with XAI")
15
+ st.markdown('---')
16
+
17
+
18
+ #--- streamlit: add a sidebar
19
+ litSideBar.init()
20
+
21
+
22
+ #if __name__ == '__main__':
23
+ # st.run("main:app", host="0.0.0.0", port=49300, reload=True)
24
+ # streamlit run app.py --server.port 49400 --server.maxUploadSize 2000
25
+
26
+ #aryPkg[moduleNames.index(page)].run()
bin/images/dbl.png ADDED
bin/images/logo_omdena_saudi.png ADDED
bin/models/__init__.py ADDED
File without changes
bin/models/util_joinModel.sh ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ <<blkHeader
4
+ Name: util_joinModel
5
+ Purpose: reconstitutes a split pyTorch binary model with weights, into a single binary file
6
+ Usage: ./util_joinModel.sh <source pattern match> <dest model file>
7
+ - the first arg has to be wrapped in single quotes to ensure that bash does not expand wildcards
8
+ Prereqs: a model folder within bin/models; containing a split pyTorch model.pth as 1 or more model_nn files
9
+ Todo: get the parent folder name and use this as the name for the model file
10
+ blkHeader
11
+
12
+ #--- dependencies
13
+ #none
14
+
15
+
16
+ #--- initialization
17
+ #--- $1: first arg; source pattern match; eg './bin/models/deeplabv3*vhflip30/model_a*'; Note that this is wildcarded so must be in quotes
18
+ #--- $n: last arg; dest model file; eg. ./bin/models/model.pth
19
+ strPth_patternMatch=$1
20
+ strPth_filMatch=( $strPth_patternMatch ) #--- expand the pattern match; get the first value of the pattern match
21
+ strPth_parentFld=$(dirname $strPth_filMatch) #--- get the parent dir of the first file match
22
+ strPth_mdlFile=${@: -1} #--- Note: this gets the last arg; otherwise the 2nd arg would be an iteration of the 1st arg wildcard
23
+
24
+ #echo "TRACE: strPth_patternMatch= $strPth_patternMatch"
25
+ #echo "TRACE: strPth_filMatch= $strPth_filMatch"
26
+ #echo "TRACE: strPth_parentFld= $strPth_parentFld"
27
+ #echo "TRACE: strPth_mdlFile= $strPth_mdlFile"
28
+
29
+ #--- reconstitute model
30
+ #--- Note: cat command does not work with single-quote literals; do not reapply single quotes
31
+ #echo "cat ${strPth_patternMatch} > ${strPth_mdlFile}"
32
+ cat ${strPth_patternMatch} > ${strPth_mdlFile}
bin/models/util_splitModel.sh ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ <<blkHeader
4
+ Name: util_splitModel
5
+ Purpose: convenience script to split a single pyTorch .pth model file with weights into smaller 10MB chunks in order to store within github
6
+ Usage: ./util_splitModel.sh <src model file> <dest folder>
7
+ - the first arg has to be wrapped in single quotes to ensure that bash does not expand wildcards
8
+ Prereqs: a pytorch model file
9
+ Todo: get the parent folder name and use this as the name for the model file
10
+ blkHeader
11
+
12
+ #--- dependencies
13
+ #none
14
+
15
+
16
+ #--- initialization
17
+ #--- $1: first arg; the source model file; eg ./bin/models/model.pth
18
+ #--- $n: last arg; dest model path; eg. ./test_model_folder
19
+ strPth_mdlFile=$1
20
+ strPth_mdlFolder=$2
21
+ strPrefix='/model_'
22
+
23
+ #echo "TRACE: strPth_mdlFile= $strPth_mdlFile"
24
+ echo "TRACE: strPth_mdlFolder= $strPth_mdlFolder"
25
+
26
+ #--- ensure the target dir exists
27
+ mkdir -p $strPth_mdlFolder
28
+
29
+ #--- split the model into smaller chunks
30
+ echo "split -b 10M $strPth_mdlFile $strPth_mdlFolder$strPrefix"
31
+ split -b 10M $strPth_mdlFile $strPth_mdlFolder$strPrefix
config.toml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [server]
2
+
3
+ maxUploadSize = 2000 #--- increased from default 200MB to 2000MB
main.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ purpose: fastAPI routing
3
+ '''
4
+
5
+ from fastapi import FastAPI
6
+ from fastapi.responses import HTMLResponse
7
+ from fastapi import APIRouter, Request, Response
8
+ from fastapi.templating import Jinja2Templates
9
+ import uvicorn
10
+
11
+ #--- import custom libraries
12
+ import lib.utils as libUtils
13
+
14
+
15
+ #--- imported route handlers
16
+ from routes.api.rte_api import rteApi
17
+ from routes.api.rte_wsi import rteWsi
18
+ from routes.api.rte_tiles import rteTiles
19
+
20
+
21
+ #--- fastAPI self doc descriptors
22
+ description = """
23
+ Omdena Saudi Arabia: Liver Cancer HCC Diagnosis with XAI
24
+
25
+ <insert purpose>
26
+
27
+ ## key business benefit #1
28
+ ## key business benefit #2
29
+ ## key business benefit #3
30
+
31
+ You will be able to:
32
+ * key feature #1
33
+ * key feature #2
34
+ * key feature #3
35
+ """
36
+
37
+ app = FastAPI(
38
+ title="App: Omdena Saudi Arabia - Liver Cancer HCC Diagnosis with XAI",
39
+ description=description,
40
+ version="0.0.1",
41
+ terms_of_service="http://example.com/terms/",
42
+ contact={
43
+ "name": "Iain McKone",
44
+ "email": "iain.mckone@gmail.com",
45
+ },
46
+ license_info={
47
+ "name": "Apache 2.0",
48
+ "url": "https://www.apache.org/licenses/LICENSE-2.0.html",
49
+ },
50
+ )
51
+
52
+
53
+ #--- configure route handlers
54
+ app.include_router(rteWsi, prefix="/api/wsi")
55
+ app.include_router(rteTiles, prefix="/api/tiles")
56
+ app.include_router(rteApi, prefix="/api")
57
+
58
+ #app.include_router(rteQa, prefix="/qa")
59
+
60
+
61
+ m_kstrPath_templ = libUtils.pth_templ
62
+ m_templRef = Jinja2Templates(directory=str(m_kstrPath_templ))
63
+
64
+
65
+ def get_jinja2Templ(request: Request, pdfResults, strParamTitle, lngNumRecords, blnIsTrain=False, blnIsSample=False):
66
+ lngNumRecords = min(lngNumRecords, libUtils.m_klngMaxRecords)
67
+ if (blnIsTrain): strParamTitle = strParamTitle + " - Training Data"
68
+ if (not blnIsTrain): strParamTitle = strParamTitle + " - Test Data"
69
+ if (blnIsSample): lngNumRecords = libUtils.m_klngSampleSize
70
+ strParamTitle = strParamTitle + " - max " + str(lngNumRecords) + " rows"
71
+
72
+ kstrTempl = 'templ_showDataframe.html'
73
+ jsonContext = {'request': request,
74
+ 'paramTitle': strParamTitle,
75
+ 'paramDataframe': pdfResults.sample(lngNumRecords).to_html(classes='table table-striped')
76
+ }
77
+ result = m_templRef.TemplateResponse(kstrTempl, jsonContext)
78
+ return result
79
+
80
+
81
+ #--- get main ui/ux entry point
82
+ @app.get('/')
83
+ def index():
84
+ return {
85
+ "message": "Landing page: Omdena Saudi Arabia - Liver HCC Diagnosis with XAI"
86
+ }
87
+
88
+
89
+
90
+ if __name__ == '__main__':
91
+ uvicorn.run("main:app", host="0.0.0.0", port=49300, reload=True)
92
+ #CMD ["uvicorn", "main:app", "--host=0.0.0.0", "--reload"]
requirements.txt ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- 20230530: commented out all secondary packages as they were causing the huggingfaceSpace to fail
2
+
3
+ #altair==4.2.2
4
+ #anyio==3.6.2
5
+ #attrs==23.1.0
6
+ #backports.zoneinfo==0.2.1
7
+ #blinker==1.6.2
8
+ #cachetools==5.3.0
9
+ #certifi==2023.5.7
10
+ #charset-normalizer==3.1.0
11
+ #click==8.1.3
12
+ #decorator==5.1.1
13
+ #entrypoints==0.4
14
+ fastapi==0.95.2
15
+ #gitdb==4.0.10
16
+ #git-lfs
17
+ #GitPython==3.1.31
18
+ grad-cam
19
+ #h11==0.14.0
20
+ #idna==3.4
21
+ #importlib-metadata==6.6.0
22
+ #importlib-resources==5.12.0
23
+ #ipython-genutils==0.2.0
24
+ Jinja2==3.1.2
25
+ joblib==1.2.0
26
+ jsonschema==4.17.3
27
+ #markdown-it-py==2.2.0
28
+ #MarkupSafe==2.1.2
29
+ #mdurl==0.1.2
30
+ numpy==1.24.3
31
+ #packaging==23.1
32
+ pandas==1.5.3
33
+ #Pillow==9.5.0
34
+ #pkgutil_resolve_name==1.3.10
35
+ plotly==5.14.1
36
+ #protobuf==3.20.3
37
+ #pyarrow==12.0.0
38
+ #pydantic==1.10.8
39
+ #pydeck==0.8.1b0
40
+ #Pygments==2.15.1
41
+ #Pympler==1.0.1
42
+ #pyrsistent==0.19.3
43
+ #python-dateutil==2.8.2
44
+ #pytz==2023.3
45
+ #PyYAML==6.0
46
+ #requests==2.31.0
47
+ #rich==13.3.5
48
+ scikit-learn==1.1.1
49
+ #scipy==1.10.1
50
+ #six==1.16.0
51
+ #smmap==5.0.0
52
+ #sniffio==1.3.0
53
+ #starlette==0.27.0
54
+ streamlit==1.24.0
55
+ #tenacity==8.2.2
56
+ #threadpoolctl==3.1.0
57
+ #toml==0.10.2
58
+ #toolz==0.12.0
59
+ torch
60
+ torchvision
61
+ #tornado==6.3.2
62
+ #typing_extensions==4.6.2
63
+ #tzlocal==5.0.1
64
+ #urllib3==2.0.2
65
+ uvicorn==0.22.0
66
+ #validators==0.20.0
67
+ #watchdog==3.0.0
68
+ #zipp==3.15.0
routes/__init__.py ADDED
File without changes
routes/api/__init__.py ADDED
File without changes
routes/api/rte_api.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import APIRouter, Request, Response
2
+ from fastapi.responses import JSONResponse
3
+
4
+ import pandas as pd
5
+ import json
6
+
7
+ #import lib.claims as libClaims
8
+ #from lib.models import mdl_utils, mdl_xgb
9
+
10
+
11
+ rteApi = APIRouter()
12
+
13
+
14
+ #---
15
+ @rteApi.get('/')
16
+ def api_entry():
17
+ return {
18
+ "message": "api routing - welcome to Omdena Saudi HCC api"
19
+ }
20
+
21
+
22
+
23
+ '''
24
+ #--- >>> SAMPLE CODE BELOW
25
+ #--- return json for claims data (merged)
26
+ #--- note: current is kaggle, but future could include from yyyymm filter
27
+ @rteApi.get('/claims', response_class = JSONResponse)
28
+ def api_getClaims(request: Request, response: Response):
29
+ pdfClaims = libClaims.load_claims()
30
+ jsonSample = pdfClaims.head(50).to_json(orient="records", indent=4)
31
+ result = json.loads(jsonSample)
32
+ return result
33
+
34
+
35
+ #--- return json for featEng
36
+ @rteApi.get('/claims/doFeatEng/', response_class = JSONResponse)
37
+ def tst_claims_featEng():
38
+ pdfClaims = libClaims.load_claims()
39
+ pdfFeatEng = libClaims.do_featEng(pdfClaims)
40
+ jsonSample = pdfClaims.head(50).to_json(orient="records", indent=4)
41
+ result = json.loads(jsonSample)
42
+ return result
43
+
44
+
45
+ @rteApi.get('/claims/doStdScaling/', response_class = JSONResponse)
46
+ def tst_claims_stdScaling():
47
+ pdfClaims = libClaims.load_claims()
48
+ pdfFeatEng = libClaims.do_featEng(pdfClaims)
49
+ pdfScaled = mdl_utils.doClaims_stdScaler_toPdf(pdfFeatEng)
50
+
51
+ jsonSample = pdfClaims.head(50).to_json(orient="records", indent=4)
52
+ result = json.loads(jsonSample)
53
+ return result
54
+
55
+
56
+ @rteApi.get('/claims/predict/superv', response_class = JSONResponse)
57
+ @rteApi.get('/claims/predict/xgb', response_class = JSONResponse)
58
+ def predict_xgb():
59
+ #--- load test data
60
+ pdfClaims = libClaims.load_claims()
61
+ pdfFeatEng = libClaims.do_featEng(pdfClaims)
62
+
63
+ npaScaled = mdl_utils.do_stdScaler(pdfFeatEng)
64
+ pdfScaled = mdl_utils.do_stdScaler_toPdf(npaScaled)
65
+
66
+ ndaPredict = mdl_xgb.predict(npaScaled)
67
+ pdfPredict = pd.DataFrame(ndaPredict)
68
+
69
+ #--- stitch the grouped data with the labels
70
+ pdfResults = pdfScaled.copy()
71
+ pdfResults.insert(0, "hasAnom?", pdfPredict[0])
72
+
73
+ #--- filter to only those rows that are flagged with an anomaly
74
+ pdfResults = pdfResults[pdfResults['hasAnom?'] > 0]
75
+
76
+ jsonSample = pdfResults.head(50).to_json(orient="records", indent=4)
77
+ result = json.loads(jsonSample)
78
+ return result
79
+ '''
routes/api/rte_tiles.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import APIRouter, Request, Response
2
+ from fastapi.responses import HTMLResponse
3
+ import numpy as np
4
+ import cv2
5
+ import os
6
+
7
+
8
+ import main as libMain
9
+ from lib import utils as libUtils
10
+
11
+
12
+ m_kstrFile = __file__
13
+ m_blnTraceOn = True
14
+
15
+ m_kstrPath_templ = libUtils.pth_templ
16
+
17
+
18
+ rteTiles = APIRouter()
19
+
20
+
21
+ #---
22
+ @rteTiles.get('/')
23
+ def api_tiles():
24
+ return {
25
+ "message": "tiles api endpoint - welcome to the endpoint for tile image processing"
26
+ }
27
+
28
+
29
+ #---
30
+ @rteTiles.get('/raw/upload')
31
+ def api_tilesRawUpload():
32
+ '''
33
+ process an array of uploaded raw Tiles (from external app path)
34
+ - cleanup all old raw images in /data/tiles/raw
35
+ - save uploads to /data/tiles/raw
36
+ - create tile class obj; capture file path, size, zoomMagnif, etc
37
+ - create array of tile class objs
38
+ - return(s) json
39
+ - ack tile/raw uploads with info/attribs
40
+ '''
41
+ return {
42
+ "message": "tilesRawUpload endpoint - file processing of raw tile images"
43
+ }
44
+
45
+
46
+ @rteTiles.get('/raw/norm')
47
+ def api_tilesRawNormalize(strPthTile):
48
+ '''
49
+ process an array of uploaded raw Tiles (from internal app path)
50
+ - cleanup all old norm images in /data/tiles/norm
51
+ - process tile normalization ops
52
+ - save norm tiles to /data/tiles/norm
53
+ - create tile class obj; capture file path, size, zoomMagnif, etc
54
+ - return(s) json
55
+ - ack tile/norms with info/attribs
56
+ '''
57
+ #--- get file attributes
58
+ strFilPath, strFilName = os.path.split(strPthTile)
59
+ strPthRaw = strPthTile
60
+
61
+ #--- load the tile as a binary object
62
+ with open(strPthRaw,"rb") as filRaw:
63
+ imgRaw = filRaw.read()
64
+
65
+ #--- Resize Tiles to 256x256
66
+ #--- Note: imgTile is a buffer object.
67
+ aryNp = np.frombuffer(imgRaw, np.uint8)
68
+ imgTemp = cv2.imdecode(aryNp, cv2.IMREAD_COLOR)
69
+ imgResized = cv2.resize(imgTemp, (256, 256))
70
+
71
+ #--- save the normalized file
72
+ imgNorm = imgResized
73
+ strPthNorm = "data/tiles/norm", strFilName
74
+ with open(os.path.join(strPthNorm),"wb") as filNorm:
75
+ filNorm.write(imgResized.buffer)
76
+ return strPthNorm
77
+ """ return {
78
+ "message": "tileRawNorm endpoint - normalization of raw tile images"
79
+ }
80
+ """
81
+
82
+ @rteTiles.get('/norm/upload')
83
+ def api_tilesNormUpload():
84
+ '''
85
+ process an array of uploaded norm Tiles (from external app path)
86
+ - cleanup all old norm images in /data/tiles/norm
87
+ - save uploads to /data/tiles/norm
88
+ - create tile class obj; capture file path, size, zoomMagnif, etc
89
+ - create array of tile class objs
90
+ - return(s) json
91
+ - ack tile/norm uploads with info/attribs
92
+ '''
93
+ return {
94
+ "message": "tilesNormUpload endpoint - file processing of norm tile images"
95
+ }
96
+
97
+
98
+ @rteTiles.get('/norm/preprocess')
99
+ def api_tilesNormPreprocess():
100
+ '''
101
+ preprocess an array of uploaded norm Tiles (from internal app path)
102
+ - perform remaining pre-processing of tiles prior to model prediction
103
+ - cleanup all old preproc images in /data/tiles/preproc
104
+ - save preproc tiles to /data/tiles/preproc
105
+ - create tile class obj; capture file path, size, zoomMagnif, etc
106
+ - return(s) json
107
+ - ack tile/preproc with info/attribs
108
+ '''
109
+ return {
110
+ "message": "tileNormPreprocess endpoint - preprocessing of normalized tile images"
111
+ }
112
+
113
+
114
+ @rteTiles.get('/preproc/upload')
115
+ def api_tilesPreprocUpload():
116
+ '''
117
+ process an array of uploaded preprocessed Tiles (from external app path)
118
+ - cleanup all old preproc images in /data/tiles/preproc
119
+ - save uploads to /data/tiles/preproc
120
+ - create tile class obj; capture file path, size, zoomMagnif, etc
121
+ - create array of tile class objs
122
+ - return(s) json
123
+ - ack tile/preproc uploads with info/attribs
124
+ '''
125
+ return {
126
+ "message": "tilesPreprocUpload endpoint - manage upload of preprocessed tile images, in prep for modelling/prdictions"
127
+ }
128
+
129
+
130
+ @rteTiles.get('/preproc/augment')
131
+ def api_tilesPreprocAugment():
132
+ '''
133
+ process an array of uploaded preprocessed tiles (from internal app path)
134
+ - cleanup all old augmented tiles in /data/tiles/augm
135
+ - perform augments of tiles prior to model prediction (translation, rotation, transforms)
136
+ - save augmented tiles to /data/tiles/augm
137
+ - create tile class obj; capture file path, size, zoomMagnif, etc
138
+ - return(s) json
139
+ - ack tile/augm with info/attribs
140
+ '''
141
+ return {
142
+ "message": "tilePreprocAugment endpoint - augment tile images"
143
+ }
144
+
145
+
146
+ @rteTiles.get('/augm/upload')
147
+ def api_tilesAugmUpload():
148
+ '''
149
+ process an array of augmented tiles (from external app path)
150
+ - cleanup all old augm images in /data/tiles/augm
151
+ - save uploads to /data/tiles/augm
152
+ - create tile class obj; capture file path, size, zoomMagnif, etc
153
+ - create array of tile class objs
154
+ - return(s) json
155
+ - ack tile/augm uploads with info/attribs
156
+ '''
157
+ return {
158
+ "message": "tilesAugmUpload endpoint - manage upload of augmented tile images, in prep for modelling/predictions"
159
+ }
160
+
161
+
162
+ #---
163
+ @rteTiles.get('/raw/predict')
164
+ def api_tileRawPredict():
165
+ return {
166
+ "message": "tile_rawPredict api endpoint - welcome to the endpoint for tile predictions"
167
+ }
168
+
169
+
170
+ #---
171
+ @rteTiles.get('/norm/segment')
172
+ def api_tileNormPredict():
173
+ return {
174
+ "message": "tile_normPredict api endpoint - welcome to the endpoint for tile predictions"
175
+ }
176
+
177
+ #---
178
+ @rteTiles.get('/norm/predict')
179
+ def api_tileNormPredict():
180
+ return {
181
+ "message": "tile_normPredict api endpoint - welcome to the endpoint for tile predictions"
182
+ }
183
+
184
+
185
+ #---
186
+ @rteTiles.get('/preproc/predict')
187
+ def api_tilePreprocPredict():
188
+ return {
189
+ "message": "tile_preprocPredict api endpoint - welcome to the endpoint for tile predictions"
190
+ }
191
+
192
+
193
+ #---
194
+ @rteTiles.get('/augm/predict')
195
+ def api_tileAugmPredict():
196
+ return {
197
+ "message": "tile_augmPredict api endpoint - welcome to the endpoint for tile predictions"
198
+ }
routes/api/rte_wsi.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import APIRouter, Request, Response
2
+ from fastapi.responses import HTMLResponse
3
+
4
+
5
+ import main as libMain
6
+ from lib import utils as libUtils
7
+
8
+
9
+ m_kstrFile = __file__
10
+ m_blnTraceOn = True
11
+
12
+ m_kstrPath_templ = libUtils.pth_templ
13
+
14
+
15
+ rteWsi = APIRouter()
16
+
17
+
18
+ #---
19
+ @rteWsi.get('/')
20
+ def api_wsi():
21
+ return {
22
+ "message": "wsi api endpoint - welcome to the endpoint for wsi image processing"
23
+ }
24
+
25
+
26
+ #---
27
+ @rteWsi.get('/upload')
28
+ def api_wsiUpload():
29
+ '''
30
+ process a single uploaded WSI image (from external app path)
31
+ - cleanup all old WSI images in /data/wsi/raw
32
+ - save upload to /data/wsi/raw
33
+ - create wsi class obj; capture file path, size, zoomMagnif, etc
34
+ - return(s) json
35
+ - ack wsi upload with info/attribs
36
+ '''
37
+ return {
38
+ "message": "wsiUpload endpoint - file processing of one uploaded wsi image"
39
+ }
40
+
41
+
42
+ #---
43
+ @rteWsi.get('/chunk')
44
+ def api_wsiChunk():
45
+ '''
46
+ process a single WSI image (from internal app path)
47
+ - create wsi class obj; capture file path, size, zoomMagnif, etc
48
+ - kick off tile chunking process;
49
+ - save tiles to /data/tiles/raw
50
+ - return(s) json
51
+ - ack wsi upload with info/attribs
52
+ - ack of tiles created: total count; names, paths, attribs (dimensions)
53
+ '''
54
+ return {
55
+ "message": "wsiLoad endpoint - for chunking of wsi image to one or more tiles"
56
+ }
routes/qa/__init__.py ADDED
File without changes
routes/qa/rte_qa.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import APIRouter
2
+
3
+
4
+ m_kstrFile = __file__
5
+ m_blnTraceOn = True
6
+
7
+
8
+ rteQa = APIRouter()
9
+
10
+
11
+ @rteQa.get('/')
12
+ @rteQa.get('/verif')
13
+ @rteQa.get('/valid')
14
+ def qa_entry():
15
+ return {
16
+ "message": "qa routing - welcome to Omdena Saudi HCC qa"
17
+ }
templ/templ_results.html ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <body>{{ dataframe | safe }}</body>
4
+ </html>
templ/templ_showDataframe.html ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <title>Fourthbrain Capstone: Healthcare Anomalies</title>
6
+ <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">
7
+ </head>
8
+ <body>
9
+
10
+ <h2>{{ paramTitle }}:</h2>
11
+
12
+ <!-- Mark data as safe, otherwise it will be rendered as a string -->
13
+ {{ paramDataframe | safe }}
14
+ </body>
15
+ </html>
uix/__init__.py ADDED
File without changes
uix/lit_packages.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+
3
+
4
+ #--- return a list of streamlit packages/pages to render
5
+ def packages():
6
+ #---
7
+ ary_pkg = []
8
+ ary_pkg.extend(['lit_continentData',
9
+ 'lit_countryData'
10
+ ])
11
+ return ary_pkg
12
+
13
+
14
+
15
+ def get_aryPkgDescr():
16
+ #--- load list of pages to display
17
+ aryDescr = []
18
+ aryPkgs = []
19
+
20
+ aryModules = packages()
21
+ for modname in aryModules:
22
+ m = importlib.import_module('.'+ modname,'uix')
23
+ aryPkgs.append(m)
24
+
25
+ #--- use the module description attribute if it exists
26
+ #--- otherwise use the module name
27
+ try:
28
+ aryDescr.append(m.description)
29
+ except:
30
+ aryDescr.append(modname)
31
+ return [aryDescr, aryPkgs]
uix/lit_sidebar.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import importlib
3
+ from uix import lit_packages
4
+
5
+ from uix.pages import lit_home, lit_about, lit_diagnosis
6
+ from uix.pages import lit_qaConfigCheck
7
+
8
+
9
+ #--- alt define sidebar pages
10
+ m_aryPages = {
11
+ "Home": lit_home, #--- TODO: update
12
+ "Diagnosis: One Tile": lit_diagnosis,
13
+ #"QA: File Check": lit_qaConfigCheck,
14
+ "About": lit_about
15
+ }
16
+
17
+
18
+ #--- define module-level vars
19
+ m_aryModNames = lit_packages.packages()
20
+ m_aryDescr = []
21
+ m_aryMods = []
22
+
23
+
24
+ def init():
25
+ #--- upper panel
26
+ with st.sidebar:
27
+ kstrUrl_image = "bin/images/logo_omdena_saudi.png"
28
+ st.sidebar.image(kstrUrl_image, width=200)
29
+ #st.sidebar.markdown('Omdena Saudi - Liver HCC Diagnosis with XAI')
30
+
31
+
32
+ #--- init checkboxes
33
+ strKey = st.sidebar.radio("", list(m_aryPages.keys()))
34
+ pagSel = m_aryPages[strKey]
35
+ writePage(pagSel)
36
+
37
+
38
+
39
+ def init_selectBox():
40
+ #--- init module array of page names, and descr
41
+ init_modDescrAry()
42
+
43
+ # Display the sidebar with a menu of apps
44
+ kstrMsg = """
45
+ __Claims Anomaly Views__
46
+ """
47
+ with st.sidebar:
48
+ st.markdown('---')
49
+ st.markdown(kstrMsg)
50
+ page = st.selectbox('Select:', m_aryModNames, format_func=fmt_modName)
51
+
52
+ #--- display sidebar footer
53
+ with st.sidebar:
54
+ st.markdown('---')
55
+ st.write('Developed by Chavarria, McKone, Sharma')
56
+ st.write('Contact at iain.mckone@gmail.com')
57
+
58
+ # Run the chosen app
59
+ m_aryMods[m_aryModNames.index(page)].run()
60
+
61
+
62
+
63
+ def init_modDescrAry():
64
+ #--- init global array of page names, and descr
65
+ #--- note: you need to specify global scope for fxns to access module-level variables
66
+ global m_aryMods
67
+ global m_aryDescr
68
+
69
+ m_aryMods = []
70
+ m_aryDescr = []
71
+ for modName in m_aryModNames:
72
+ modTemp = importlib.import_module('.'+modName,'uix')
73
+ m_aryMods.append(modTemp)
74
+
75
+ #--- If the module has a description attribute use that in the
76
+ #--- select box otherwise use the module name
77
+ try:
78
+ m_aryDescr.append(modTemp.description)
79
+ except:
80
+ m_aryDescr.append(modName)
81
+
82
+
83
+
84
+ #--- display the app descriptions instead of the module names in the selctbox
85
+ def fmt_modName(strName):
86
+ global m_aryModNames
87
+ global m_aryDescr
88
+ return m_aryDescr[m_aryModNames.index(strName)]
89
+
90
+
91
+
92
+ def writePage(uixFile):
93
+ #--- writes out the page for the selected combo
94
+
95
+ # _reload_module(page)
96
+ uixFile.run()
uix/pages/__init__.py ADDED
File without changes
uix/pages/lit_about.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- about page
2
+ import streamlit as st
3
+
4
+ description = "About"
5
+ def run():
6
+
7
+ print("\nINFO (lit_about.run) loading ", description, " page ...")
8
+
9
+ #---
10
+ #st.experimental_memo.clear() #--- try to clear cache each time this page is hit
11
+ #st.cache_data.clear()
12
+
13
+ st.markdown('### About')
14
+ st.markdown('### Omdena Saudi: Liver HCC Diagnosis with XAI')
15
+ st.markdown('#### Chapter Lead: Dr. Shai')
16
+
17
+ st.markdown(
18
+ """
19
+ About page
20
+ """,
21
+ unsafe_allow_html=True,
22
+ )
uix/pages/lit_diagnosis.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- anomaly detection - supervised page
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import plotly.express as px
5
+ import plotly.graph_objects as go
6
+ import numpy as np
7
+
8
+ import matplotlib.pyplot as plt
9
+ from PIL import Image
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torchvision.models.segmentation import deeplabv3_resnet50
14
+ from torchvision.transforms.functional import to_tensor
15
+ from pytorch_grad_cam import GradCAM
16
+ from pytorch_grad_cam.utils.image import show_cam_on_image
17
+
18
+ import lib.utils as libUtils
19
+
20
+ import sys
21
+ import os
22
+
23
+ description = "Diagnosis"
24
+ m_kblnTraceOn = True #--- enable/disable module level tracing
25
+
26
+
27
+ #--- model initializations
28
+ #data_batch_size = 3 #--- decrease the number of images loaded, processed if the notebook crashes due to limited RAM
29
+ #NUM_EPOCHS = 10 # 50
30
+ #BATCH_SIZE = data_batch_size
31
+ NUM_CLASSES = 3
32
+
33
+ # path to save model weights
34
+ #BESTMODEL_PATH = r"model_deeplabv3_r50_full_training_dataset_80-20_split_10epochs_no-norm_vhflip30.pth" #--- path to save model weights
35
+ BESTMODEL_PATH = r"model.pth"
36
+ MODEL_FULLPATH = 'bin/models/' + BESTMODEL_PATH
37
+ model_path = MODEL_FULLPATH
38
+
39
+ DEFAULT_DEVICE_TYPE = ('cuda' if torch.cuda.is_available() else 'cpu') #--- cuda if gpu; cpu if on Colab Free
40
+ DEFAULT_BACKBONE_MODEL = 'r50'
41
+ backbone_model_name = DEFAULT_BACKBONE_MODEL
42
+
43
+
44
+
45
+ def run():
46
+ #--- note: in python, you need to specify global scope for fxns to access module-level variables
47
+ global m_kbln_TraceOn
48
+ print("\nINFO (litDiagnosis.run) loading ", description, " page ...")
49
+
50
+
51
+ #--- page settings
52
+ if (m_kblnTraceOn): print("TRACE1 (litDiagnosis.run): Initialize Page Settings ...")
53
+ st.header("Single Tile Diagnosis")
54
+
55
+
56
+ #--- provide file drag/drop capability
57
+ m_blnDisableDragDrop = False
58
+ if(not m_blnDisableDragDrop):
59
+ #btnSave = st.button("Save")
60
+ imgDropped = st.file_uploader("Upload a single Tile", type=["png", "jpg", "tif", "tiff", "img"])
61
+ m_blnDisableDragDrop = (imgDropped is None)
62
+
63
+
64
+ #if (True):
65
+ try:
66
+
67
+ #--- show:
68
+ #if (m_kblnTraceOn): print("TRACE (litDiagnosis.run): load WSI ...")
69
+ if (m_blnDisableDragDrop):
70
+ #--- load wsi
71
+ print("")
72
+ else:
73
+ #--- display uploaded file details
74
+ if (m_kblnTraceOn): print("TRACE1 (litDiagnosis.run): Print upload file details ...")
75
+ st.write(
76
+ "FileName:", "&nbsp;&ensp;&emsp;", imgDropped.name, "\n",
77
+ "FileType:", "&nbsp;&emsp;&emsp;", imgDropped.type, "\n"
78
+ )
79
+
80
+ #--- display diagnosis results ... format (vertical)
81
+ #showDiagnosis_vert(imgDropped)
82
+ showDiagnosis_horiz(imgDropped)
83
+
84
+ except TypeError as e:
85
+ print("ERROR (litDiagnosis.run_typeError1): ", e)
86
+
87
+ except:
88
+ e = sys.exc_info()
89
+ print("ERROR (litDiagnosis.run_genError1): ", e)
90
+
91
+
92
+ try:
93
+
94
+ #--- display WSI
95
+ #showImg_wsi(img)
96
+ #st.image("bin/images/sample_wsi.png", use_column_width=True)
97
+
98
+ print("")
99
+
100
+ except TypeError as e:
101
+ print("ERROR (litDiagnosis.run_typeError2): ", e)
102
+
103
+ except:
104
+ e = sys.exc_info()
105
+ print("ERROR (litDiagnosis.run_genError2): ", e)
106
+
107
+
108
+ def showImg_wsi(img):
109
+ print("")
110
+
111
+
112
+ def readyModel_getPreds(imgDropped):
113
+ print("TRACE: save raw tile ...")
114
+ strPth_tilRaw = save_tilRaw(imgDropped)
115
+
116
+ #--- ready the model
117
+ print("TRACE: ready base model ...")
118
+ mdlBase = readyBaseModel()
119
+ print("TRACE: ready model with weights ...")
120
+ mdlWeights = readyModelWithWeights(mdlBase)
121
+ print("TRACE: ready model with xai ...")
122
+ mdlXai = readyModelWithXAI(mdlWeights)
123
+
124
+ #--- get the XAI weighted prediction
125
+ print("TRACE: get xai weighted pred ...")
126
+ output_pred, tns_batch = predXai_tile(mdlXai, strPth_tilRaw)
127
+
128
+ #--- get the GRADCAM predictions
129
+ print("TRACE: get GRADCAM preds ...")
130
+ cam_img_bg, cam_img_wt, cam_img_vt = predGradCam_tile(output_pred, mdlXai, tns_batch)
131
+
132
+ print("TRACE: return readyModel_getPreds ...")
133
+ return strPth_tilRaw, output_pred, cam_img_bg, cam_img_wt, cam_img_vt
134
+
135
+
136
+ def showDiagnosis_horiz(imgDropped):
137
+
138
+ #--- copy the uploaded file to data/tiles/raw
139
+ st.write("#")
140
+
141
+ #--- ready the model, get predictions
142
+ print("TRACE2: ready model ...")
143
+ strPth_tilRaw, xai_pred, cam_img_bg, cam_img_wt, cam_img_vt = readyModel_getPreds(imgDropped)
144
+
145
+ #--- display the raw prediction: headers
146
+ print("TRACE2: display raw preds, headers ...")
147
+ colRaw, colPred, colGradBack, colGradWhole, colGradViable = st.columns(5)
148
+ colRaw.write("Raw Tile")
149
+ colPred.write("Prediction")
150
+ colGradBack.write("GradCAM: Background")
151
+ colGradWhole.write("GradCAM: Whole Tumor")
152
+ colGradViable.write("GradCAM: Viable Tumor")
153
+
154
+ #--- display the raw prediction: images
155
+ colRaw, colPred, colGradBack, colGradWhole, colGradViable = st.columns(5)
156
+ showCol_rawTil(colRaw, strPth_tilRaw)
157
+ showCol_predTil(colPred, xai_pred[0], strPth_tilRaw)
158
+ showCol_gradCamImg("imgGradCam_bg", colGradBack, cam_img_bg[0])
159
+ showCol_gradCamImg("imgGradCam_wt", colGradWhole, cam_img_wt[0])
160
+ showCol_gradCamImg("imgGradCam_vt", colGradViable, cam_img_vt[0])
161
+
162
+
163
+ def showCol_rawTil(colRaw, strPth_tilRaw):
164
+ print("TRACE3: showCol_rawTil ...")
165
+ colRaw.image(strPth_tilRaw, width=400, use_column_width=True)
166
+
167
+
168
+ def showCol_predTil(colPred, xai_pred, strPth_tilRaw):
169
+ kstrPth_tilePred = "data/tiles/pred/"
170
+ strFilName = os.path.basename(strPth_tilRaw)
171
+ strFil_tilePred = kstrPth_tilePred + strFilName
172
+
173
+ print("TRACE3: showCol_predTil2 ... ", strFil_tilePred)
174
+ argmax_mask = torch.argmax(xai_pred, dim=0)
175
+ preds = argmax_mask.cpu().squeeze().numpy()
176
+
177
+ cmap = plt.cm.get_cmap('tab10', 3) # Choose a colormap with 3 colors
178
+ print("TRACE3: typeOf(preds) ...", type(preds))
179
+
180
+ print("TRACE3: save pred image ...")
181
+ plt.imsave(strFil_tilePred, preds, cmap=cmap, vmin=0, vmax=2)
182
+
183
+ print("TRACE3: load image ...", strFil_tilePred)
184
+ colPred.image(strFil_tilePred, width=400, use_column_width=True)
185
+
186
+
187
+ def showCol_gradCamImg(strImgContext, colGradCam, cam_img):
188
+ print("TRACE3: showCol_gradImg ... ", strImgContext)
189
+ imgGradCam = Image.fromarray(cam_img)
190
+ colGradCam.image(imgGradCam, width=400, use_column_width=True)
191
+
192
+
193
+ def showDiagnosis_vert(imgDropped):
194
+
195
+ #--- copy the uploaded file to data/tiles/raw
196
+ st.write("#")
197
+
198
+ #--- ready the model, get predictions
199
+ strPth_tilRaw, xai_pred, cam_img_bg, cam_img_wt, cam_img_vt = readyModel_getPreds(imgDropped)
200
+
201
+ #--- display all predictions
202
+ '''
203
+ strPth_tilPred = save_tilPred(output_pred)
204
+ strPth_tilGradBg = save_tilGradBg(cam_img_bg)
205
+ strPth_tilGradWt = None
206
+ strPth_tilGradVt = None
207
+ '''
208
+
209
+ #--- display the raw image
210
+ lstDescr = ["Raw Tile", "Prediction", "GradCam: Background", "GradCam: Whole Tumor", "GradCam: Viable Tumor"]
211
+ lstImages = [strPth_tilRaw, strPth_tilRaw, strPth_tilRaw, strPth_tilRaw, strPth_tilRaw]
212
+
213
+ #--- display the raw prediction
214
+ for imgIdx in range(len(lstImages)):
215
+ colDescr, colImage = st.columns([0.25, 0.75])
216
+ colDescr.write(lstDescr[imgIdx])
217
+ colImage.image(lstImages[imgIdx], width=400, use_column_width=True)
218
+
219
+
220
+ def save_tilRaw(imgDropped):
221
+ #--- copy the uploaded raw Tile to data/tiles/raw
222
+ kstrPth_tileRaw = "data/tiles/raw/"
223
+ strFil_tileRaw = kstrPth_tileRaw + imgDropped.name
224
+ with open(strFil_tileRaw,"wb") as filUpload:
225
+ filUpload.write(imgDropped.getbuffer())
226
+ print("TRACE: uploaded file saved to ", strFil_tileRaw)
227
+ return strFil_tileRaw
228
+
229
+
230
+ def prepare_model(backbone_model="mbv3", num_classes=2):
231
+
232
+ # Initialize model with pre-trained weights.
233
+ weights = 'DEFAULT'
234
+ if backbone_model == "mbv3":
235
+ model = None
236
+ #model = deeplabv3_mobilenet_v3_large(weights=weights)
237
+
238
+ elif backbone_model == "r50":
239
+ model = deeplabv3_resnet50(weights=weights)
240
+
241
+ elif backbone_model == "r101":
242
+ model = None
243
+ #model = deeplabv3_resnet101(weights=weights)
244
+
245
+ else:
246
+ raise ValueError("Wrong backbone model passed. Must be one of 'mbv3', 'r50' and 'r101' ")
247
+
248
+ # Update the number of output channels for the output layer.
249
+ # This will remove the pre-trained weights for the last layer.
250
+ model.classifier[-1] = nn.Conv2d(model.classifier[-1].in_channels, num_classes, kernel_size=1)
251
+ model.aux_classifier[-1] = nn.Conv2d(model.aux_classifier[-1].in_channels, num_classes, kernel_size=1)
252
+ return model
253
+
254
+
255
+ # computes IoU or Dice index
256
+ def intermediate_metric_calculation(predictions, targets, use_dice=False,
257
+ smooth=1e-6, dims=(2, 3)):
258
+ # dims corresponding to image height and width: [B, C, H, W].
259
+
260
+ # Intersection: |G ∩ P|. Shape: (batch_size, num_classes)
261
+ intersection = (predictions * targets).sum(dim=dims) + smooth
262
+
263
+ # Summation: |G| + |P|. Shape: (batch_size, num_classes).
264
+ summation = (predictions.sum(dim=dims) + targets.sum(dim=dims)) + smooth
265
+
266
+ if use_dice:
267
+ # Dice Shape: (batch_size, num_classes)
268
+ metric = (2.0 * intersection) / summation
269
+ else:
270
+ # Union. Shape: (batch_size, num_classes)
271
+ union = summation - intersection + smooth
272
+
273
+ # IoU Shape: (batch_size, num_classes)
274
+ metric = intersection / union
275
+
276
+ # Compute the mean over the remaining axes (batch and classes).
277
+ # Shape: Scalar
278
+ total = metric.mean()
279
+
280
+ #print(f"iou = {total}")
281
+ return total
282
+
283
+
284
+ def convert_2_onehot(matrix, num_classes=3):
285
+ '''
286
+ Perform one-hot encoding across the channel dimension.
287
+ '''
288
+ matrix = matrix.permute(0, 2, 3, 1)
289
+ matrix = torch.argmax(matrix, dim=-1)
290
+ matrix = torch.nn.functional.one_hot(matrix, num_classes=num_classes)
291
+ matrix = matrix.permute(0, 3, 1, 2)
292
+ return matrix
293
+
294
+
295
+ #--- I'm using just categorical cross_entropy for now
296
+ class Loss(nn.Module):
297
+ def __init__(self):
298
+ super().__init__()
299
+
300
+ def forward(self, predictions, targets):
301
+ # predictions --> (B, #C, H, W) unnormalized
302
+ # targets --> (B, #C, H, W) one-hot encoded
303
+ targets = torch.argmax(targets, dim=1)
304
+ pixel_loss = F.cross_entropy(predictions, targets, reduction="mean")
305
+
306
+ return pixel_loss
307
+
308
+
309
+ class Metric(nn.Module):
310
+ def __init__(self, num_classes=3, smooth=1e-6, use_dice=False):
311
+ super().__init__()
312
+ self.num_classes = num_classes
313
+ self.smooth = smooth
314
+ self.use_dice = use_dice
315
+
316
+ def forward(self, predictions, targets):
317
+ # predictions --> (B, #C, H, W) unnormalized
318
+ # targets --> (B, #C, H, W) one-hot encoded
319
+
320
+ # Converting unnormalized predictions into one-hot encoded across channels.
321
+ # Shape: (B, #C, H, W)
322
+ predictions = convert_2_onehot(predictions, num_classes=self.num_classes) # one hot encoded
323
+ metric = intermediate_metric_calculation(predictions, targets, use_dice=self.use_dice, smooth=self.smooth)
324
+
325
+ # Compute the mean over the remaining axes (batch and classes). Shape: Scalar
326
+ return metric
327
+
328
+
329
+ def get_default_device():
330
+ return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
331
+
332
+
333
+ def readyBaseModel():
334
+
335
+ #--- prep model conditions
336
+ device = get_default_device()
337
+ model = prepare_model(backbone_model=backbone_model_name, num_classes=NUM_CLASSES)
338
+
339
+ metric_name = "iou"
340
+ use_dice = (True if metric_name == "dice" else False)
341
+ metric_fn = Metric(num_classes=NUM_CLASSES, use_dice=use_dice).to(device)
342
+ loss_fn = Loss().to(device)
343
+ optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
344
+
345
+ return model
346
+
347
+
348
+ def readyModelWithWeights(mdlBase):
349
+ print("TRACE: loading model with weights ... ", model_path)
350
+ mdlBase.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
351
+ model_with_weights = mdlBase
352
+ model_with_weights.eval()
353
+ return model_with_weights
354
+
355
+
356
+ class SegmentationModelOutputWrapper(torch.nn.Module):
357
+ def __init__(self, model):
358
+ super(SegmentationModelOutputWrapper, self).__init__()
359
+ self.model = model
360
+
361
+ def forward(self, x):
362
+ return self.model(x)["out"]
363
+
364
+
365
+ def readyModelWithXAI(mdlWeighted):
366
+ model_xai = SegmentationModelOutputWrapper(mdlWeighted)
367
+
368
+ model_xai.eval()
369
+ model_xai.to('cpu')
370
+ return model_xai
371
+
372
+
373
+ #--- demo: process a single file for validation/demo
374
+ def val_filToTensor(strPth_fil):
375
+ img_fil = Image.open(strPth_fil)
376
+ img_fil = img_fil.convert("RGB")
377
+ img_fil = np.asarray(img_fil)/255
378
+ return to_tensor(img_fil).unsqueeze(0)
379
+
380
+
381
+ #--- TODO demo: process a batch of files for validation/demo
382
+ def val_aryToTensor(pth_fil, ary_fils):
383
+ aryTensor = []
384
+ for str_filName in ary_fils:
385
+ aryTensor.append(val_filToTensor(pth_fil, str_filName))
386
+ return aryTensor
387
+
388
+
389
+ def predXai_tile(mdl_xai, strPth_tileRaw):
390
+ #--- run a prediction for a single
391
+ print("TRACE: get tensor from single file ... ", strPth_tileRaw)
392
+ val_tensorFil = val_filToTensor(strPth_tileRaw)
393
+ val_tensorBatch = val_tensorFil
394
+
395
+ print("TRACE: get mdl_xai prediction ...")
396
+ output = mdl_xai(val_tensorBatch.float().to('cpu'))
397
+
398
+ print("TRACE: predXai_tile return ...")
399
+ return output, val_tensorBatch
400
+
401
+
402
+ class SemanticSegmentationTarget:
403
+ def __init__(self, category, mask):
404
+ self.category = category
405
+ self.mask = torch.from_numpy(mask)
406
+ if torch.cuda.is_available():
407
+ self.mask = self.mask.cuda()
408
+
409
+ def __call__(self, model_output):
410
+ return (model_output[self.category, :, : ] * self.mask).sum()
411
+
412
+
413
+ def predGradCam_tile(output_xaiPred, mdl_xai, val_image_batch):
414
+ print("TRACE: predGradCam initialize ...")
415
+ cam_img_bg = []
416
+ cam_img_wt = []
417
+ cam_img_vt = []
418
+
419
+ sem_classes = ['__background__', 'whole_tumor', 'viable_tumor']
420
+ sem_class_to_idx = {cls: idx for (idx, cls) in enumerate(sem_classes)}
421
+
422
+ argmax_mask = torch.argmax(output_xaiPred, dim=1)
423
+ argmax_mask_np = argmax_mask.cpu().squeeze().numpy()
424
+ preds = argmax_mask_np
425
+
426
+ seg_mask = preds
427
+ bg_category = sem_class_to_idx["__background__"]
428
+ bg_mask_float = np.float32(seg_mask == bg_category)
429
+ wt_category = sem_class_to_idx["whole_tumor"]
430
+ wt_mask_float = np.float32(seg_mask == wt_category)
431
+ vt_category = sem_class_to_idx["viable_tumor"]
432
+ vt_mask_float = np.float32(seg_mask == vt_category)
433
+
434
+ target_layers = [mdl_xai.model.backbone.layer4]
435
+
436
+ for i in range(len(val_image_batch)):
437
+ rgb_img = np.float32(val_image_batch[i].permute(1, 2, 0))
438
+ rgb_tensor = val_image_batch[i].unsqueeze(0).float()
439
+
440
+ print("TRACE: process the background ...")
441
+ targets = [SemanticSegmentationTarget(bg_category, bg_mask_float[i])]
442
+ with GradCAM(model=mdl_xai,
443
+ target_layers=target_layers,
444
+ use_cuda=torch.cuda.is_available()) as cam:
445
+
446
+ grayscale_cam = cam(input_tensor = rgb_tensor,
447
+ targets = targets)[0, :]
448
+ cam_img_bg.append(show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True))
449
+
450
+ print("TRACE: process whole tumors ...")
451
+ targets = [SemanticSegmentationTarget(wt_category, wt_mask_float[i])]
452
+ with GradCAM(model=mdl_xai,
453
+ target_layers=target_layers,
454
+ use_cuda=torch.cuda.is_available()) as cam:
455
+
456
+ grayscale_cam = cam(input_tensor = rgb_tensor,
457
+ targets = targets)[0, :]
458
+ cam_img_wt.append(show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True))
459
+
460
+ print("TRACE: process viable tumors ...")
461
+ targets = [SemanticSegmentationTarget(vt_category, vt_mask_float[i])]
462
+ with GradCAM(model=mdl_xai,
463
+ target_layers=target_layers,
464
+ use_cuda=torch.cuda.is_available()) as cam:
465
+
466
+ grayscale_cam = cam(input_tensor = rgb_tensor,
467
+ targets = targets)[0, :]
468
+ cam_img_vt.append(show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True))
469
+
470
+ return cam_img_bg, cam_img_wt, cam_img_vt
uix/pages/lit_home.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- about page
2
+ import streamlit as st
3
+
4
+ description = "Home"
5
+ def run():
6
+
7
+ print("\nINFO (lit_home.run) loading ", description, " page ...")
8
+
9
+
10
+ st.markdown('### Home')
11
+ st.markdown('### Omdena Saudi: Liver HCC Diagnosis with XAI')
12
+ st.markdown('#### Chapter Lead: Dr. Shai')
13
+ st.markdown('\
14
+ <background> \
15
+ ')
16
+
17
+ st.markdown('\
18
+ <basis> \
19
+ ')
20
+
21
+ st.markdown('\
22
+ <claim> \
23
+ ')
24
+
25
+ st.markdown(
26
+ """
27
+
28
+ Home page
29
+
30
+ """,
31
+ unsafe_allow_html=True,
32
+ )
uix/pages/lit_qaConfigCheck.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #--- about page
2
+ import streamlit as st
3
+ import sys, os
4
+ import pandas as pd
5
+
6
+ import lib.utils as libUtils
7
+
8
+
9
+ description = "QA: Config Check"
10
+ def run():
11
+
12
+ print("\nINFO (lit_config.run) loading ", description, " page ...")
13
+
14
+ #---
15
+ #st.experimental_memo.clear() #--- try to clear cache each time this page is hit
16
+ #st.cache_data.clear()
17
+
18
+ st.markdown('### Configuration Check')
19
+
20
+ #--- check that base folders exist
21
+ #--- list raw WSIs
22
+ lstWSI = os.listdir(libUtils.pth_dtaWsi + "raw/")
23
+ print("TRACE: ", lstWSI)
24
+ st.dataframe(
25
+ pd.DataFrame({"Raw WSI": lstWSI,}),
26
+ use_container_width=True
27
+ )
28
+
29
+ #--- list raw Tiles
30
+ lstTiles = os.listdir(libUtils.pth_dtaTiles + "raw/")
31
+ print("TRACE: ", lstTiles)
32
+ st.dataframe(
33
+ pd.DataFrame({"Raw Tiles": lstTiles,}),
34
+ use_container_width=True
35
+ )
36
+
37
+ #--- list raw demo Tiles
38
+ lstDemo = os.listdir(libUtils.pth_dtaDemoTiles + "raw/")
39
+ print("TRACE: ", lstDemo)
40
+ st.dataframe(
41
+ pd.DataFrame({"Raw Demo Tiles": lstDemo,}),
42
+ use_container_width=True
43
+ )
44
+
45
+
46
+ st.markdown('''
47
+ <style>
48
+ [data-testid="stMarkdownContainer"] ul{
49
+ list-style-position: inside;
50
+ }
51
+ </style>
52
+ ''', unsafe_allow_html=True)
53
+
54
+
55
+ # st.markdown(
56
+ # st.footer(
57
+ # """
58
+ # Configuration Check page
59
+ # """,
60
+ # unsafe_allow_html=True,
61
+ # )
62
+
63
+ cssFooter="""
64
+ <style>
65
+ a:link,
66
+ a:visited{
67
+ color: blue;
68
+ background-color: transparent;
69
+ text-decoration: underline;
70
+ }
71
+ a:hover, a:active {
72
+ color: red;
73
+ background-color: transparent;
74
+ text-decoration: underline;
75
+ }
76
+ .footer {
77
+ position: fixed;
78
+ left: 0; bottom: 0; width: 100%;
79
+ background-color: white;
80
+ color: black;
81
+ text-align: center;
82
+ }
83
+ </style>
84
+ <div class="footer">
85
+ <p>Configuration Check Page</p>
86
+ </div>
87
+ """
88
+ st.markdown(cssFooter, unsafe_allow_html=True)
util_dockerPreRun.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #--- Note: this file is designed to run locally as well as within docker to prep the environment
4
+ #--- for volume initialization; ensure folders are in place; assume: we are in the /app folder
5
+ mkdir -p data/demo_tiles/raw
6
+ mkdir -p data/tiles/raw data/tiles/pred data/tiles/grad_bg data/tiles/grad_wt data/tiles/grad_vt
7
+ mkdir -p data/wsi/raw
8
+
9
+
10
+ <<blockComment
11
+ - the binary model is stored as split files named mdl_nn
12
+ - this is done to ensure that the model can be stored within gitHub
13
+ - the split model is recreated on docker container startup using the cat command
14
+ blockComment
15
+
16
+ #--- recreate single model file from its parts, stored within a specific model version folder
17
+ ./bin/models/util_joinModel.sh './bin/models/deeplabv3*vhflip30/model_a*' ./bin/models/model.pth
18
+
19
+ #--- run streamlit/fastapi
20
+ ./util_startLocal_streamlitFastApi.sh
util_startLocal_streamlitFastApi.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #--- Note: this file is designed to run locally and within docker to prep the environment
4
+ #--- for volume initialization; ensure folders are in place; assume: we are in the /app folder
5
+ #mkdir -p data/demo_tiles/raw
6
+ #mkdir -p data/tiles/raw data/tiles/pred data/tiles/grad_bg data/tiles/grad_wt data/tiles/grad_vt
7
+ #mkdir -p data/wsi/raw
8
+
9
+ #--- for streamlit; external 49400; internal 39400
10
+ echo "INFO: starting streamlit ..."
11
+ streamlit run app.py --server.port=39400 --server.maxUploadSize=2000 &
12
+
13
+ #--- for fastapi; external 49500; internal 39500
14
+ echo "INFO: starting fastapi ..."
15
+ uvicorn main:app --reload --workers 1 --host 0.0.0.0 --port 39500 &
16
+
17
+ #--- wait for any process to exit
18
+ wait -n
19
+
20
+ #--- Exit with status of process that exited first
21
+ exit $?