import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # Load the model and tokenizer model = AutoModelForSequenceClassification.from_pretrained('kietnt0603/bertweet-base-hate-speech-offensive') tokenizer = AutoTokenizer.from_pretrained('kietnt0603/bertweet-base-hate-speech-offensive') # Define the labels labels = ["Hate", "Offensive", "Neither"] # Function for prediction def predict(inputs: str) -> Dict[str, Any]: # Tokenize input text inputs_dict = tokenizer(inputs, return_tensors="pt") # Forward pass with torch.no_grad(): outputs = model(**inputs_dict) # Softmax to get probabilities probabilities = torch.nn.functional.softmax(outputs.logits, dim=1) # Get probabilities for each label label_probabilities = {label: round(prob.item(), 4) for label, prob in zip(labels, probabilities[0].tolist())} # Return the result return label_probabilities # Create title and description for the task title = "Text Classification Demo" description = "Classify text into categories: Hate, Offensive, Neither" article = "Model loaded from https://huggingface.co/kietnt0603/bertweet-base-hate-speech-offensive" # Create the Gradio interface iface = gr.Interface(fn=predict, inputs="textbox", outputs="dictionary", title=title, description=description, article=article) # Launch the interface iface.launch()