import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, ImagePromptMessageContent, SystemPromptMessage, TextPromptMessageContent, UserPromptMessage, ) from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.google.llm.llm import GoogleLargeLanguageModel from tests.integration_tests.model_runtime.__mock.google import setup_google_mock @pytest.mark.parametrize('setup_google_mock', [['none']], indirect=True) def test_validate_credentials(setup_google_mock): model = GoogleLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='gemini-pro', credentials={ 'google_api_key': 'invalid_key' } ) model.validate_credentials( model='gemini-pro', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') } ) @pytest.mark.parametrize('setup_google_mock', [['none']], indirect=True) def test_invoke_model(setup_google_mock): model = GoogleLargeLanguageModel() response = model.invoke( model='gemini-pro', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Give me your worst dad joke or i will unplug you' ), AssistantPromptMessage( content='Why did the scarecrow win an award? Because he was outstanding in his field!' ), UserPromptMessage( content=[ TextPromptMessageContent( data="ok something snarkier pls" ), TextPromptMessageContent( data="i may still unplug you" )] ) ], model_parameters={ 'temperature': 0.5, 'top_p': 1.0, 'max_tokens_to_sample': 2048 }, stop=['How'], stream=False, user="abc-123" ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize('setup_google_mock', [['none']], indirect=True) def test_invoke_stream_model(setup_google_mock): model = GoogleLargeLanguageModel() response = model.invoke( model='gemini-pro', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Give me your worst dad joke or i will unplug you' ), AssistantPromptMessage( content='Why did the scarecrow win an award? Because he was outstanding in his field!' ), UserPromptMessage( content=[ TextPromptMessageContent( data="ok something snarkier pls" ), TextPromptMessageContent( data="i may still unplug you" )] ) ], model_parameters={ 'temperature': 0.2, 'top_k': 5, 'max_tokens_to_sample': 2048 }, stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize('setup_google_mock', [['none']], indirect=True) def test_invoke_chat_model_with_vision(setup_google_mock): model = GoogleLargeLanguageModel() result = model.invoke( model='gemini-pro-vision', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content=[ TextPromptMessageContent( data="what do you see?" ), ImagePromptMessageContent( data='' ) ] ) ], model_parameters={ 'temperature': 0.3, 'top_p': 0.2, 'top_k': 3, 'max_tokens': 100 }, stream=False, user="abc-123" ) assert isinstance(result, LLMResult) assert len(result.message.content) > 0 @pytest.mark.parametrize('setup_google_mock', [['none']], indirect=True) def test_invoke_chat_model_with_vision_multi_pics(setup_google_mock): model = GoogleLargeLanguageModel() result = model.invoke( model='gemini-pro-vision', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.' ), UserPromptMessage( content=[ TextPromptMessageContent( data="what do you see?" ), ImagePromptMessageContent( data='' ) ] ), AssistantPromptMessage( content="I see a blue letter 'D' with a gradient from light blue to dark blue." ), UserPromptMessage( content=[ TextPromptMessageContent( data="what about now?" ), ImagePromptMessageContent( data='' ) ] ) ], model_parameters={ 'temperature': 0.3, 'top_p': 0.2, 'top_k': 3, 'max_tokens': 100 }, stream=False, user="abc-123" ) print(f"resultz: {result.message.content}") assert isinstance(result, LLMResult) assert len(result.message.content) > 0 def test_get_num_tokens(): model = GoogleLargeLanguageModel() num_tokens = model.get_num_tokens( model='gemini-pro', credentials={ 'google_api_key': os.environ.get('GOOGLE_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ] ) assert num_tokens > 0 # The exact number of tokens may vary based on the model's tokenization