Spaces:
Runtime error
Runtime error
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 | |
from torchvision.utils import save_image | |
from PIL import Image | |
from cldm.ddim_hacked import DDIMSampler | |
from cldm.model import create_model, load_state_dict | |
from pytorch_lightning import seed_everything | |
from share import * | |
import config | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
import os | |
import requests | |
from io import BytesIO | |
from annotator.util import resize_image, HWC3 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
use_blip = False | |
use_gradio = False | |
# Diffusion init using diffusers. | |
from vlpart.vlpart import build_vlpart | |
from segment_anything import build_sam, SamPredictor | |
from segment_anything.utils.amg import remove_small_regions | |
import detectron2.data.transforms as T | |
# diffusers==0.14.0 required. | |
from diffusers import ControlNetModel, UniPCMultistepScheduler | |
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline | |
from diffusers.utils import load_image | |
import torch | |
base_model_path = "stabilityai/stable-diffusion-2-inpainting" | |
controlnet_path = "shgao/edit-anything-v0-1-1" | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
base_model_path, controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed | |
pipe.enable_xformers_memory_efficient_attention() | |
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate | |
pipe.to(device) | |
# Segment-Anything init. | |
# pip install git+https://github.com/facebookresearch/segment-anything.git | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
sam_checkpoint = "./models/sam_vit_h_4b8939.pth" | |
vlpart_checkpoint = "./models/swinbase_part_0a0000.pth" | |
model_type = "default" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
vlpart = build_vlpart(checkpoint=vlpart_checkpoint) | |
vlpart.to(device=device) | |
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device=device)) | |
# BLIP2 init. | |
if use_blip: | |
# need the latest transformers | |
# pip install git+https://github.com/huggingface/transformers.git | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
blip_model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) | |
blip_model.to(device) | |
blip_model.to(device) | |
def get_blip2_text(image): | |
inputs = processor(image, return_tensors="pt").to(device, torch.float16) | |
generated_ids = blip_model.generate(**inputs, max_new_tokens=50) | |
generated_text = processor.batch_decode( | |
generated_ids, skip_special_tokens=True)[0].strip() | |
return generated_text | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
full_img = None | |
# for ann in sorted_anns: | |
for i in range(len(sorted_anns)): | |
ann = anns[i] | |
m = ann['segmentation'] | |
if full_img is None: | |
full_img = np.zeros((m.shape[0], m.shape[1], 3)) | |
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16) | |
map[m != 0] = i + 1 | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
full_img[m != 0] = color_mask | |
full_img = full_img * 255 | |
# anno encoding from https://github.com/LUSSeg/ImageNet-S | |
res = np.zeros((map.shape[0], map.shape[1], 3)) | |
res[:, :, 0] = map % 256 | |
res[:, :, 1] = map // 256 | |
res.astype(np.float32) | |
return full_img, res | |
def get_sam_control(image): | |
masks = mask_generator.generate(image) | |
full_img, res = show_anns(masks) | |
return full_img, res | |
def prompt2mask(original_image, text_prompt): | |
# original_image = original_image[:, :, :3] | |
preprocess = T.ResizeShortestEdge([800, 800], 1333) | |
height, width = original_image.shape[:2] | |
image = preprocess.get_transform(original_image).apply_image(original_image) | |
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) | |
inputs = {"image": image, "height": height, "width": width} | |
with torch.no_grad(): | |
predictions = vlpart.inference([inputs], text_prompt=text_prompt)[0] | |
boxes, masks = None, None | |
filter_scores, filter_boxes, filter_classes = [], [], [] | |
if "instances" in predictions: | |
instances = predictions['instances'].to('cpu') | |
boxes = instances.pred_boxes.tensor if instances.has("pred_boxes") else None | |
scores = instances.scores if instances.has("scores") else None | |
classes = instances.pred_classes.tolist() if instances.has("pred_classes") else None | |
num_obj = len(scores) | |
for obj_ind in range(num_obj): | |
category_score = scores[obj_ind] | |
if category_score < 0.7: | |
continue | |
filter_scores.append(category_score) | |
filter_boxes.append(boxes[obj_ind]) | |
filter_classes.append(classes[obj_ind]) | |
final_m = torch.zeros((original_image.shape[0], original_image.shape[1])) | |
if len(filter_boxes) > 0: | |
# sam model inference | |
sam_predictor.set_image(original_image) | |
boxes_filter = torch.stack(filter_boxes) | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filter, original_image.shape[:2]) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes.to(device), | |
multimask_output=False, | |
) | |
# remove small disconnected regions and holes | |
fine_masks = [] | |
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w] | |
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0]) | |
masks = np.stack(fine_masks, axis=0)[:, np.newaxis] | |
masks = torch.from_numpy(masks) | |
num_obj = len(scores) | |
for obj_ind in range(num_obj): | |
# box = boxes[obj_ind] | |
score = scores[obj_ind] | |
if score < 0.5: | |
continue | |
m = masks[obj_ind][0] | |
final_m += m | |
final_m = (final_m > 0).to('cpu').numpy() | |
# print(final_m.max(), final_m.min()) | |
return np.dstack((final_m, final_m, final_m)) * 255 | |
def process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta): | |
with torch.no_grad(): | |
mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8) | |
if use_blip: | |
print("Generating text:") | |
blip2_prompt = get_blip2_text(input_image) | |
print("Generated text:", blip2_prompt) | |
if len(prompt) > 0: | |
prompt = blip2_prompt + ',' + prompt | |
else: | |
prompt = blip2_prompt | |
print("All text:", prompt) | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
print("Generating SAM seg:") | |
# the default SAM model is trained with 1024 size. | |
full_segmask, detected_map = get_sam_control( | |
resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map.astype(np.uint8)) | |
detected_map = cv2.resize( | |
detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy( | |
detected_map.copy()).float().cuda() | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
mask_image = HWC3(mask_image.astype(np.uint8)) | |
mask_image = cv2.resize( | |
mask_image, (W, H), interpolation=cv2.INTER_LINEAR) | |
mask_image = Image.fromarray(mask_image) | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
generator = torch.manual_seed(seed) | |
x_samples = pipe( | |
image=img, | |
mask_image=mask_image, | |
prompt=[prompt + ', ' + a_prompt] * num_samples, | |
negative_prompt=[n_prompt] * num_samples, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
controlnet_conditioning_image=control.type(torch.float16), | |
height=H, | |
width=W, | |
).images | |
results = [x_samples[i] for i in range(num_samples)] | |
return [full_segmask, mask_image] + results | |
def download_image(url): | |
response = requests.get(url) | |
return Image.open(BytesIO(response.content)).convert("RGB") | |
# disable gradio when not using GUI. | |
if not use_gradio: | |
image_path = "assets/dog.png" | |
input_image = Image.open(image_path) | |
input_image = np.array(input_image, dtype=np.uint8)[:, :, :3] | |
mask_prompt = 'dog head.' | |
# mask_image = np.array(prompt2mask(input_image, mask_prompt), dtype=np.uint8) | |
prompt = "cute dogs" | |
a_prompt = 'best quality, extremely detailed' | |
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
num_samples = 3 | |
image_resolution = 512 | |
detect_resolution = 512 | |
ddim_steps = 30 | |
guess_mode = False | |
strength = 1.0 | |
scale = 9.0 | |
seed = -1 | |
eta = 0.0 | |
outputs = process(input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, | |
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) | |
image_list = [] | |
input_image = resize_image(input_image, 512) | |
image_list.append(torch.tensor(input_image)) | |
for i in range(len(outputs)): | |
each = outputs[i] | |
if type(each) is not np.ndarray: | |
each = np.array(each, dtype=np.uint8) | |
each = resize_image(each, 512) | |
print(i, each.shape) | |
image_list.append(torch.tensor(each)) | |
image_list = torch.stack(image_list).permute(0, 3, 1, 2) | |
save_image(image_list, "sample.jpg", nrow=3, | |
normalize=True, value_range=(0, 255)) | |
else: | |
print("The GUI is not tested yet. Please open an issue if you find bugs.") | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown( | |
"## Edit Anything powered by ControlNet+SAM+BLIP2+Stable Diffusion") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider( | |
label="Image Resolution", minimum=256, maximum=768, value=512, step=64) | |
strength = gr.Slider( | |
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider( | |
label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1) | |
ddim_steps = gr.Slider( | |
label="Steps", minimum=1, maximum=100, value=20, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, | |
maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
mask_prompt = gr.Textbox( | |
label="Mask Prompt", value='best quality, extremely detailed') | |
a_prompt = gr.Textbox( | |
label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery( | |
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
ips = [input_image, mask_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, | |
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(server_name='0.0.0.0') | |