File size: 7,354 Bytes
0e0ee20
 
 
 
47d4812
0e0ee20
7dc34c1
47d4812
7039ded
607d766
47d4812
f560ce0
47d4812
9651e1f
47d4812
f560ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0ee20
 
 
 
 
 
 
 
 
f3e96f9
c59400c
e2c1d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8ccda
0e0ee20
 
 
 
 
 
 
6f8ccda
0e0ee20
 
fb2fad6
d857e4f
aad2ddd
5b82e60
 
72cad74
 
 
 
 
 
 
 
 
 
b9cc145
72cad74
f560ce0
 
 
 
b9daa28
 
 
 
 
 
 
049add4
b9daa28
e42d93d
f560ce0
 
 
 
b9daa28
a6aa35a
b9daa28
049add4
f560ce0
 
f603013
582c2e7
f560ce0
 
 
 
 
4616428
396445c
 
 
f560ce0
396445c
72cad74
 
f3e96f9
0e0ee20
 
 
 
 
 
 
 
b488680
e2c1d93
 
 
 
c59400c
0e0ee20
e2c1d93
 
 
fd8e800
d857e4f
13d0dc5
3cdd70e
72cad74
 
0e0ee20
0b93385
 
1441e58
07d3eff
504da62
 
 
07d3eff
4179a4c
a044e21
0e0ee20
d6802e8
 
 
02302e4
07d3eff
0e0ee20
db98dea
1fff27d
9cbafa8
b220271
 
 
 
 
 
a044e21
1fff27d
db98dea
8dce9c7
0e0ee20
 
b220271
2c6d128
 
 
1cbd1d7
2c6d128
 
6f8ccda
 
2c6d128
 
 
 
6f8ccda
0e0ee20
5ecece8
 
eb504a3
5ecece8
07d3eff
 
 
0e0ee20
f3e96f9
7fb9e28
0e0ee20
 
 
d6802e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import json
import logging
import torch
from PIL import Image, PngImagePlugin
import spaces
from diffusers import DiffusionPipeline
from transformers.utils.hub import move_cache
import copy
import random
import os
import pygsheets
import time
from datetime import datetime



# Move cache
move_cache()

# Initialize GSheet Connexion
#Authorization
gc = pygsheets.authorize(service_account_env_var='GSHEET_AUTH')

#Open the google spreadsheet
sh = gc.open('AndroFLUX-Logs')

#Select the second sheet 
wks = sh[1]

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )

@spaces.GPU(duration=90)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        image = pipe(
            prompt=f"{prompt} {trigger_word}",
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
            max_sequence_length=512
        ).images[0]

    # Save the image to a file with a unique name in /tmp directory
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    image_filename = f"generated_image_{timestamp}.png"

    #create temp directory if not exist

    newpath = r'/tmp/gradio' 
    if not os.path.exists(newpath):
        os.makedirs(newpath)
    
    image_path = os.path.join("/tmp/gradio", image_filename)
    
    
    # Add Metadata
    new_metadata_string = f"{prompt}\nNegative prompt:  none \nSteps: {steps}, CFG scale: {cfg_scale}, Seed: {seed}, Lora hashes: AndroFlux-v19: c44afd41ece1"
    metadata = PngImagePlugin.PngInfo()
    metadata.add_text("parameters", new_metadata_string)

    
    #Save image in file
    image.save(image_path, pnginfo=metadata)

    # Construct the URL to access the image
    
    space_url = "https://killwithabass-flux-gay-lora-explorer.hf.space/gradio_api"  
    image_url = f"{space_url}/file={image_path}"

    #Log queries
    try:
        if "girl" not in prompt and "woman" not in prompt:
            wks.append_table(values=[prompt, cfg_scale, steps, seed, width, height, lora_scale,image_url])
    except Exception as error:
        # handle the exception
        print("An exception occurred:", error)
        print(f"Image URL: {image_url}") # Log the file URL
        
    return image

def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]

    # Load LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        if "weights" in selected_lora:
            pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
        else:
            pipe.load_lora_weights(lora_path)
        
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
    print("Model : " + selected_lora["title"] + " Prompt : " + prompt)
    pipe.to("cpu")
    pipe.unload_lora_weights()
    return image, seed  

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#title{text-align: center;}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
    gr.Markdown("# Gay LoRAs Explorer for FLUX 1 DEV")
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column(scale=3):
            selected_info = gr.Markdown("")
            with gr.Accordion("LoRA Gallery", open=False):
                gallery = gr.Gallery(
                    [(item["image"], item["title"]) for item in loras],
                    label="LoRAs",
                    allow_preview=False,
                    columns=3
                )
                gr.Markdown("*You can add more models by creating a Pull Request to modify the file loras.json*")
            
        with gr.Column(scale=4):
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=True):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=896)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1152)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)

    gallery.select(
        update_selection,
        outputs=[prompt, selected_info, selected_index]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed]
    )

app.queue()
app.launch()