Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,78 @@ import re
|
|
9 |
import gradio as gr
|
10 |
import groq
|
11 |
from groq import Groq
|
|
|
12 |
|
|
|
13 |
|
14 |
# setup groq
|
15 |
|
16 |
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def handle_groq_error(e, model_name):
|
19 |
error_data = e.args[0]
|
20 |
|
@@ -359,7 +425,7 @@ def translate_audio(audio_file_path, model, prompt):
|
|
359 |
handle_groq_error(e, model)
|
360 |
|
361 |
|
362 |
-
with gr.Blocks() as interface:
|
363 |
gr.Markdown(
|
364 |
"""
|
365 |
# Groq API UI
|
@@ -430,61 +496,81 @@ with gr.Blocks() as interface:
|
|
430 |
|
431 |
|
432 |
with gr.TabItem("LLMs"):
|
433 |
-
with gr.
|
434 |
-
with gr.
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
|
490 |
interface.launch(share=True)
|
|
|
9 |
import gradio as gr
|
10 |
import groq
|
11 |
from groq import Groq
|
12 |
+
import io
|
13 |
|
14 |
+
import soundfile as sf
|
15 |
|
16 |
# setup groq
|
17 |
|
18 |
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
|
19 |
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def transcribe_audio(audio):
|
26 |
+
if audio is None:
|
27 |
+
return ""
|
28 |
+
|
29 |
+
client = groq.Client(api_key=os.environ.get("Groq_Api_Key"))
|
30 |
+
|
31 |
+
# Convert audio to the format expected by the model
|
32 |
+
# The model supports mp3, mp4, mpeg, mpga, m4a, wav, and webm file types
|
33 |
+
audio_data = audio[1] # Get the numpy array from the tuple
|
34 |
+
buffer = io.BytesIO()
|
35 |
+
sf.write(buffer, audio_data, audio[0], format='wav')
|
36 |
+
buffer.seek(0)
|
37 |
+
|
38 |
+
bytes_audio = io.BytesIO()
|
39 |
+
np.save(bytes_audio, audio_data)
|
40 |
+
bytes_audio.seek(0)
|
41 |
+
|
42 |
+
try:
|
43 |
+
# Use Distil-Whisper English powered by Groq for transcription
|
44 |
+
completion = client.audio.transcriptions.create(
|
45 |
+
model="distil-whisper-large-v3-en",
|
46 |
+
file=("audio.wav", buffer),
|
47 |
+
response_format="text"
|
48 |
+
)
|
49 |
+
return completion
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error in transcription: {str(e)}"
|
52 |
+
|
53 |
+
def generate_response(transcription, api_key):
|
54 |
+
if not transcription:
|
55 |
+
return "No transcription available. Please try speaking again."
|
56 |
+
|
57 |
+
client = groq.Client(api_key=api_key)
|
58 |
+
|
59 |
+
try:
|
60 |
+
# Use Llama 3 70B powered by Groq for text generation
|
61 |
+
completion = client.chat.completions.create(
|
62 |
+
model="llama3-70b-8192",
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
65 |
+
{"role": "user", "content": transcription}
|
66 |
+
],
|
67 |
+
)
|
68 |
+
return completion.choices[0].message.content
|
69 |
+
except Exception as e:
|
70 |
+
return f"Error in response generation: {str(e)}"
|
71 |
+
|
72 |
+
def process_audio(audio, api_key):
|
73 |
+
if not api_key:
|
74 |
+
return "Please enter your Groq API key.", "API key is required."
|
75 |
+
transcription = transcribe_audio(audio, api_key)
|
76 |
+
response = generate_response(transcription, api_key)
|
77 |
+
return transcription, response
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
def handle_groq_error(e, model_name):
|
85 |
error_data = e.args[0]
|
86 |
|
|
|
425 |
handle_groq_error(e, model)
|
426 |
|
427 |
|
428 |
+
with gr.Blocks(theme="Hev832/niceandsimple") as interface:
|
429 |
gr.Markdown(
|
430 |
"""
|
431 |
# Groq API UI
|
|
|
496 |
|
497 |
|
498 |
with gr.TabItem("LLMs"):
|
499 |
+
with gr.Tab("Chat"):
|
500 |
+
with gr.Row():
|
501 |
+
with gr.Column(scale=1, min_width=250):
|
502 |
+
model = gr.Dropdown(
|
503 |
+
choices=[
|
504 |
+
"llama3-70b-8192",
|
505 |
+
"llama3-8b-8192",
|
506 |
+
"mixtral-8x7b-32768",
|
507 |
+
"gemma-7b-it",
|
508 |
+
"gemma2-9b-it",
|
509 |
+
],
|
510 |
+
value="llama3-70b-8192",
|
511 |
+
label="Model",
|
512 |
+
)
|
513 |
+
temperature = gr.Slider(
|
514 |
+
minimum=0.0,
|
515 |
+
maximum=1.0,
|
516 |
+
step=0.01,
|
517 |
+
value=0.5,
|
518 |
+
label="Temperature",
|
519 |
+
info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
|
520 |
+
)
|
521 |
+
max_tokens = gr.Slider(
|
522 |
+
minimum=1,
|
523 |
+
maximum=8192,
|
524 |
+
step=1,
|
525 |
+
value=4096,
|
526 |
+
label="Max Tokens",
|
527 |
+
info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
|
528 |
+
)
|
529 |
+
top_p = gr.Slider(
|
530 |
+
minimum=0.0,
|
531 |
+
maximum=1.0,
|
532 |
+
step=0.01,
|
533 |
+
value=0.5,
|
534 |
+
label="Top P",
|
535 |
+
info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
|
536 |
+
)
|
537 |
+
seed = gr.Number(
|
538 |
+
precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
|
539 |
+
)
|
540 |
+
model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
|
541 |
+
with gr.Column(scale=1, min_width=400):
|
542 |
+
chatbot = gr.ChatInterface(
|
543 |
+
fn=generate_response,
|
544 |
+
chatbot=None,
|
545 |
+
additional_inputs=[
|
546 |
+
model,
|
547 |
+
temperature,
|
548 |
+
max_tokens,
|
549 |
+
top_p,
|
550 |
+
seed,
|
551 |
+
],
|
552 |
+
)
|
553 |
+
model.change(
|
554 |
+
update_max_tokens,
|
555 |
+
inputs=[
|
556 |
+
model,
|
557 |
+
],
|
558 |
+
outputs=max_tokens,
|
559 |
+
)
|
560 |
+
with gr.Tab("Voice-Powered AI Assistant"):
|
561 |
+
with gr.Row():
|
562 |
+
audio_input = gr.Audio(label="Speak!", type="numpy")
|
563 |
+
|
564 |
+
with gr.Row():
|
565 |
+
transcription_output = gr.Textbox(label="Transcription")
|
566 |
+
response_output = gr.Textbox(label="AI Assistant Response")
|
567 |
+
submit_button = gr.Button("Process", variant="primary")
|
568 |
+
|
569 |
+
submit_button.click(
|
570 |
+
process_audio,
|
571 |
+
inputs=[audio_input, api_key_input],
|
572 |
+
outputs=[transcription_output, response_output]
|
573 |
+
)
|
574 |
|
575 |
|
576 |
interface.launch(share=True)
|