Blane187 commited on
Commit
09eb127
·
verified ·
1 Parent(s): 3dd92ea

Delete vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. vc_infer_pipeline.py +0 -647
vc_infer_pipeline.py DELETED
@@ -1,647 +0,0 @@
1
- import numpy as np, parselmouth, torch, pdb, sys, os
2
- from time import time as ttime
3
- import torch.nn.functional as F
4
- import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
5
- from torch import Tensor
6
- import scipy.signal as signal
7
- import pyworld, os, traceback, faiss, librosa, torchcrepe
8
- from scipy import signal
9
- from functools import lru_cache
10
-
11
- now_dir = os.getcwd()
12
- sys.path.append(now_dir)
13
-
14
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
15
-
16
- input_audio_path2wav = {}
17
-
18
- #A fun little addition from my personal RVC branch.
19
- #You don't have to implement it if you don't have to
20
- from config import Config
21
- config=Config()
22
- from rmvpe import RMVPE
23
- print("Preloading RMVPE model...")
24
- model_rmvpe = RMVPE("rmvpe.pt", is_half=config.is_half, device=config.device)
25
- del config
26
-
27
- @lru_cache
28
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
29
- audio = input_audio_path2wav[input_audio_path]
30
- f0, t = pyworld.harvest(
31
- audio,
32
- fs=fs,
33
- f0_ceil=f0max,
34
- f0_floor=f0min,
35
- frame_period=frame_period,
36
- )
37
- f0 = pyworld.stonemask(audio, f0, t, fs)
38
- return f0
39
-
40
-
41
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
42
- # print(data1.max(),data2.max())
43
- rms1 = librosa.feature.rms(
44
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
45
- ) # 每半秒一个点
46
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
47
- rms1 = torch.from_numpy(rms1)
48
- rms1 = F.interpolate(
49
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
50
- ).squeeze()
51
- rms2 = torch.from_numpy(rms2)
52
- rms2 = F.interpolate(
53
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
54
- ).squeeze()
55
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
56
- data2 *= (
57
- torch.pow(rms1, torch.tensor(1 - rate))
58
- * torch.pow(rms2, torch.tensor(rate - 1))
59
- ).numpy()
60
- return data2
61
-
62
-
63
- class VC(object):
64
- def __init__(self, tgt_sr, config):
65
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
66
- config.x_pad,
67
- config.x_query,
68
- config.x_center,
69
- config.x_max,
70
- config.is_half,
71
- )
72
- self.sr = 16000 # hubert输入采样率
73
- self.window = 160 # 每帧点数
74
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
75
- self.t_pad_tgt = tgt_sr * self.x_pad
76
- self.t_pad2 = self.t_pad * 2
77
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
78
- self.t_center = self.sr * self.x_center # 查询切点位置
79
- self.t_max = self.sr * self.x_max # 免查询时长阈值
80
- self.device = config.device
81
-
82
- # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
83
- def get_optimal_torch_device(self, index: int = 0) -> torch.device:
84
- # Get cuda device
85
- if torch.cuda.is_available():
86
- return torch.device(
87
- f"cuda:{index % torch.cuda.device_count()}"
88
- ) # Very fast
89
- elif torch.backends.mps.is_available():
90
- return torch.device("mps")
91
- # Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
92
- # Else wise return the "cpu" as a torch device,
93
- return torch.device("cpu")
94
-
95
- # Fork Feature: Compute f0 with the crepe method
96
- def get_f0_crepe_computation(
97
- self,
98
- x,
99
- f0_min,
100
- f0_max,
101
- p_len,
102
- hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
103
- model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
104
- ):
105
- x = x.astype(
106
- np.float32
107
- ) # fixes the F.conv2D exception. We needed to convert double to float.
108
- x /= np.quantile(np.abs(x), 0.999)
109
- torch_device = self.get_optimal_torch_device()
110
- audio = torch.from_numpy(x).to(torch_device, copy=True)
111
- audio = torch.unsqueeze(audio, dim=0)
112
- if audio.ndim == 2 and audio.shape[0] > 1:
113
- audio = torch.mean(audio, dim=0, keepdim=True).detach()
114
- audio = audio.detach()
115
- print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
116
- pitch: Tensor = torchcrepe.predict(
117
- audio,
118
- self.sr,
119
- hop_length,
120
- f0_min,
121
- f0_max,
122
- model,
123
- batch_size=hop_length * 2,
124
- device=torch_device,
125
- pad=True,
126
- )
127
- p_len = p_len or x.shape[0] // hop_length
128
- # Resize the pitch for final f0
129
- source = np.array(pitch.squeeze(0).cpu().float().numpy())
130
- source[source < 0.001] = np.nan
131
- target = np.interp(
132
- np.arange(0, len(source) * p_len, len(source)) / p_len,
133
- np.arange(0, len(source)),
134
- source,
135
- )
136
- f0 = np.nan_to_num(target)
137
- return f0 # Resized f0
138
-
139
- def get_f0_official_crepe_computation(
140
- self,
141
- x,
142
- f0_min,
143
- f0_max,
144
- model="full",
145
- ):
146
- # Pick a batch size that doesn't cause memory errors on your gpu
147
- batch_size = 512
148
- # Compute pitch using first gpu
149
- audio = torch.tensor(np.copy(x))[None].float()
150
- f0, pd = torchcrepe.predict(
151
- audio,
152
- self.sr,
153
- self.window,
154
- f0_min,
155
- f0_max,
156
- model,
157
- batch_size=batch_size,
158
- device=self.device,
159
- return_periodicity=True,
160
- )
161
- pd = torchcrepe.filter.median(pd, 3)
162
- f0 = torchcrepe.filter.mean(f0, 3)
163
- f0[pd < 0.1] = 0
164
- f0 = f0[0].cpu().numpy()
165
- return f0
166
-
167
- # Fork Feature: Compute pYIN f0 method
168
- def get_f0_pyin_computation(self, x, f0_min, f0_max):
169
- y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
170
- f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
171
- f0 = f0[1:] # Get rid of extra first frame
172
- return f0
173
-
174
- # Fork Feature: Acquire median hybrid f0 estimation calculation
175
- def get_f0_hybrid_computation(
176
- self,
177
- methods_str,
178
- input_audio_path,
179
- x,
180
- f0_min,
181
- f0_max,
182
- p_len,
183
- filter_radius,
184
- crepe_hop_length,
185
- time_step,
186
- ):
187
- # Get various f0 methods from input to use in the computation stack
188
- s = methods_str
189
- s = s.split("hybrid")[1]
190
- s = s.replace("[", "").replace("]", "")
191
- methods = s.split("+")
192
- f0_computation_stack = []
193
-
194
- print("Calculating f0 pitch estimations for methods: %s" % str(methods))
195
- x = x.astype(np.float32)
196
- x /= np.quantile(np.abs(x), 0.999)
197
- # Get f0 calculations for all methods specified
198
- for method in methods:
199
- f0 = None
200
- if method == "pm":
201
- f0 = (
202
- parselmouth.Sound(x, self.sr)
203
- .to_pitch_ac(
204
- time_step=time_step / 1000,
205
- voicing_threshold=0.6,
206
- pitch_floor=f0_min,
207
- pitch_ceiling=f0_max,
208
- )
209
- .selected_array["frequency"]
210
- )
211
- pad_size = (p_len - len(f0) + 1) // 2
212
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
213
- f0 = np.pad(
214
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
215
- )
216
- elif method == "crepe":
217
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
218
- f0 = f0[1:] # Get rid of extra first frame
219
- elif method == "crepe-tiny":
220
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
221
- f0 = f0[1:] # Get rid of extra first frame
222
- elif method == "mangio-crepe":
223
- f0 = self.get_f0_crepe_computation(
224
- x, f0_min, f0_max, p_len, crepe_hop_length
225
- )
226
- elif method == "mangio-crepe-tiny":
227
- f0 = self.get_f0_crepe_computation(
228
- x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
229
- )
230
- elif method == "harvest":
231
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
232
- if filter_radius > 2:
233
- f0 = signal.medfilt(f0, 3)
234
- f0 = f0[1:] # Get rid of first frame.
235
- elif method == "dio": # Potentially buggy?
236
- f0, t = pyworld.dio(
237
- x.astype(np.double),
238
- fs=self.sr,
239
- f0_ceil=f0_max,
240
- f0_floor=f0_min,
241
- frame_period=10,
242
- )
243
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
244
- f0 = signal.medfilt(f0, 3)
245
- f0 = f0[1:]
246
- # elif method == "pyin": Not Working just yet
247
- # f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
248
- # Push method to the stack
249
- f0_computation_stack.append(f0)
250
-
251
- for fc in f0_computation_stack:
252
- print(len(fc))
253
-
254
- print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
255
- f0_median_hybrid = None
256
- if len(f0_computation_stack) == 1:
257
- f0_median_hybrid = f0_computation_stack[0]
258
- else:
259
- f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
260
- return f0_median_hybrid
261
-
262
- def get_f0(
263
- self,
264
- input_audio_path,
265
- x,
266
- p_len,
267
- f0_up_key,
268
- f0_method,
269
- filter_radius,
270
- crepe_hop_length,
271
- inp_f0=None,
272
- ):
273
- global input_audio_path2wav
274
- time_step = self.window / self.sr * 1000
275
- f0_min = 50
276
- f0_max = 1100
277
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
278
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
279
- if f0_method == "pm":
280
- f0 = (
281
- parselmouth.Sound(x, self.sr)
282
- .to_pitch_ac(
283
- time_step=time_step / 1000,
284
- voicing_threshold=0.6,
285
- pitch_floor=f0_min,
286
- pitch_ceiling=f0_max,
287
- )
288
- .selected_array["frequency"]
289
- )
290
- pad_size = (p_len - len(f0) + 1) // 2
291
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
292
- f0 = np.pad(
293
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
294
- )
295
- elif f0_method == "harvest":
296
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
297
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
298
- if filter_radius > 2:
299
- f0 = signal.medfilt(f0, 3)
300
- elif f0_method == "dio": # Potentially Buggy?
301
- f0, t = pyworld.dio(
302
- x.astype(np.double),
303
- fs=self.sr,
304
- f0_ceil=f0_max,
305
- f0_floor=f0_min,
306
- frame_period=10,
307
- )
308
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
309
- f0 = signal.medfilt(f0, 3)
310
- elif f0_method == "crepe":
311
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
312
- elif f0_method == "crepe-tiny":
313
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
314
- elif f0_method == "mangio-crepe":
315
- f0 = self.get_f0_crepe_computation(
316
- x, f0_min, f0_max, p_len, crepe_hop_length
317
- )
318
- elif f0_method == "mangio-crepe-tiny":
319
- f0 = self.get_f0_crepe_computation(
320
- x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
321
- )
322
- elif f0_method == "rmvpe":
323
- f0 = model_rmvpe.infer_from_audio(x, thred=0.03)
324
-
325
- elif "hybrid" in f0_method:
326
- # Perform hybrid median pitch estimation
327
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
328
- f0 = self.get_f0_hybrid_computation(
329
- f0_method,
330
- input_audio_path,
331
- x,
332
- f0_min,
333
- f0_max,
334
- p_len,
335
- filter_radius,
336
- crepe_hop_length,
337
- time_step,
338
- )
339
-
340
- f0 *= pow(2, f0_up_key / 12)
341
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
342
- tf0 = self.sr // self.window # 每秒f0点数
343
- if inp_f0 is not None:
344
- delta_t = np.round(
345
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
346
- ).astype("int16")
347
- replace_f0 = np.interp(
348
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
349
- )
350
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
351
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
352
- :shape
353
- ]
354
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
355
- f0bak = f0.copy()
356
- f0_mel = 1127 * np.log(1 + f0 / 700)
357
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
358
- f0_mel_max - f0_mel_min
359
- ) + 1
360
- f0_mel[f0_mel <= 1] = 1
361
- f0_mel[f0_mel > 255] = 255
362
- f0_coarse = np.rint(f0_mel).astype(int)
363
-
364
- return f0_coarse, f0bak # 1-0
365
-
366
- def vc(
367
- self,
368
- model,
369
- net_g,
370
- sid,
371
- audio0,
372
- pitch,
373
- pitchf,
374
- times,
375
- index,
376
- big_npy,
377
- index_rate,
378
- version,
379
- protect,
380
- ): # ,file_index,file_big_npy
381
- feats = torch.from_numpy(audio0)
382
- if self.is_half:
383
- feats = feats.half()
384
- else:
385
- feats = feats.float()
386
- if feats.dim() == 2: # double channels
387
- feats = feats.mean(-1)
388
- assert feats.dim() == 1, feats.dim()
389
- feats = feats.view(1, -1)
390
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
391
-
392
- inputs = {
393
- "source": feats.to(self.device),
394
- "padding_mask": padding_mask,
395
- "output_layer": 9 if version == "v1" else 12,
396
- }
397
- t0 = ttime()
398
- with torch.no_grad():
399
- logits = model.extract_features(**inputs)
400
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
401
- if protect < 0.5 and pitch != None and pitchf != None:
402
- feats0 = feats.clone()
403
- if (
404
- isinstance(index, type(None)) == False
405
- and isinstance(big_npy, type(None)) == False
406
- and index_rate != 0
407
- ):
408
- npy = feats[0].cpu().numpy()
409
- if self.is_half:
410
- npy = npy.astype("float32")
411
-
412
- # _, I = index.search(npy, 1)
413
- # npy = big_npy[I.squeeze()]
414
-
415
- score, ix = index.search(npy, k=8)
416
- weight = np.square(1 / score)
417
- weight /= weight.sum(axis=1, keepdims=True)
418
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
419
-
420
- if self.is_half:
421
- npy = npy.astype("float16")
422
- feats = (
423
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
424
- + (1 - index_rate) * feats
425
- )
426
-
427
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
428
- if protect < 0.5 and pitch != None and pitchf != None:
429
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
430
- 0, 2, 1
431
- )
432
- t1 = ttime()
433
- p_len = audio0.shape[0] // self.window
434
- if feats.shape[1] < p_len:
435
- p_len = feats.shape[1]
436
- if pitch != None and pitchf != None:
437
- pitch = pitch[:, :p_len]
438
- pitchf = pitchf[:, :p_len]
439
-
440
- if protect < 0.5 and pitch != None and pitchf != None:
441
- pitchff = pitchf.clone()
442
- pitchff[pitchf > 0] = 1
443
- pitchff[pitchf < 1] = protect
444
- pitchff = pitchff.unsqueeze(-1)
445
- feats = feats * pitchff + feats0 * (1 - pitchff)
446
- feats = feats.to(feats0.dtype)
447
- p_len = torch.tensor([p_len], device=self.device).long()
448
- with torch.no_grad():
449
- if pitch != None and pitchf != None:
450
- audio1 = (
451
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
452
- .data.cpu()
453
- .float()
454
- .numpy()
455
- )
456
- else:
457
- audio1 = (
458
- (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
459
- )
460
- del feats, p_len, padding_mask
461
- if torch.cuda.is_available():
462
- torch.cuda.empty_cache()
463
- t2 = ttime()
464
- times[0] += t1 - t0
465
- times[2] += t2 - t1
466
- return audio1
467
-
468
- def pipeline(
469
- self,
470
- model,
471
- net_g,
472
- sid,
473
- audio,
474
- input_audio_path,
475
- times,
476
- f0_up_key,
477
- f0_method,
478
- file_index,
479
- # file_big_npy,
480
- index_rate,
481
- if_f0,
482
- filter_radius,
483
- tgt_sr,
484
- resample_sr,
485
- rms_mix_rate,
486
- version,
487
- protect,
488
- crepe_hop_length,
489
- f0_file=None,
490
- ):
491
- if (
492
- file_index != ""
493
- # and file_big_npy != ""
494
- # and os.path.exists(file_big_npy) == True
495
- and os.path.exists(file_index) == True
496
- and index_rate != 0
497
- ):
498
- try:
499
- index = faiss.read_index(file_index)
500
- # big_npy = np.load(file_big_npy)
501
- big_npy = index.reconstruct_n(0, index.ntotal)
502
- except:
503
- traceback.print_exc()
504
- index = big_npy = None
505
- else:
506
- index = big_npy = None
507
- audio = signal.filtfilt(bh, ah, audio)
508
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
509
- opt_ts = []
510
- if audio_pad.shape[0] > self.t_max:
511
- audio_sum = np.zeros_like(audio)
512
- for i in range(self.window):
513
- audio_sum += audio_pad[i : i - self.window]
514
- for t in range(self.t_center, audio.shape[0], self.t_center):
515
- opt_ts.append(
516
- t
517
- - self.t_query
518
- + np.where(
519
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
520
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
521
- )[0][0]
522
- )
523
- s = 0
524
- audio_opt = []
525
- t = None
526
- t1 = ttime()
527
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
528
- p_len = audio_pad.shape[0] // self.window
529
- inp_f0 = None
530
- if hasattr(f0_file, "name") == True:
531
- try:
532
- with open(f0_file.name, "r") as f:
533
- lines = f.read().strip("\n").split("\n")
534
- inp_f0 = []
535
- for line in lines:
536
- inp_f0.append([float(i) for i in line.split(",")])
537
- inp_f0 = np.array(inp_f0, dtype="float32")
538
- except:
539
- traceback.print_exc()
540
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
541
- pitch, pitchf = None, None
542
- if if_f0 == 1:
543
- pitch, pitchf = self.get_f0(
544
- input_audio_path,
545
- audio_pad,
546
- p_len,
547
- f0_up_key,
548
- f0_method,
549
- filter_radius,
550
- crepe_hop_length,
551
- inp_f0,
552
- )
553
- pitch = pitch[:p_len]
554
- pitchf = pitchf[:p_len]
555
- if self.device == "mps":
556
- pitchf = pitchf.astype(np.float32)
557
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
558
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
559
- t2 = ttime()
560
- times[1] += t2 - t1
561
- for t in opt_ts:
562
- t = t // self.window * self.window
563
- if if_f0 == 1:
564
- audio_opt.append(
565
- self.vc(
566
- model,
567
- net_g,
568
- sid,
569
- audio_pad[s : t + self.t_pad2 + self.window],
570
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
571
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
572
- times,
573
- index,
574
- big_npy,
575
- index_rate,
576
- version,
577
- protect,
578
- )[self.t_pad_tgt : -self.t_pad_tgt]
579
- )
580
- else:
581
- audio_opt.append(
582
- self.vc(
583
- model,
584
- net_g,
585
- sid,
586
- audio_pad[s : t + self.t_pad2 + self.window],
587
- None,
588
- None,
589
- times,
590
- index,
591
- big_npy,
592
- index_rate,
593
- version,
594
- protect,
595
- )[self.t_pad_tgt : -self.t_pad_tgt]
596
- )
597
- s = t
598
- if if_f0 == 1:
599
- audio_opt.append(
600
- self.vc(
601
- model,
602
- net_g,
603
- sid,
604
- audio_pad[t:],
605
- pitch[:, t // self.window :] if t is not None else pitch,
606
- pitchf[:, t // self.window :] if t is not None else pitchf,
607
- times,
608
- index,
609
- big_npy,
610
- index_rate,
611
- version,
612
- protect,
613
- )[self.t_pad_tgt : -self.t_pad_tgt]
614
- )
615
- else:
616
- audio_opt.append(
617
- self.vc(
618
- model,
619
- net_g,
620
- sid,
621
- audio_pad[t:],
622
- None,
623
- None,
624
- times,
625
- index,
626
- big_npy,
627
- index_rate,
628
- version,
629
- protect,
630
- )[self.t_pad_tgt : -self.t_pad_tgt]
631
- )
632
- audio_opt = np.concatenate(audio_opt)
633
- if rms_mix_rate != 1:
634
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
635
- if resample_sr >= 16000 and tgt_sr != resample_sr:
636
- audio_opt = librosa.resample(
637
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
638
- )
639
- audio_max = np.abs(audio_opt).max() / 0.99
640
- max_int16 = 32768
641
- if audio_max > 1:
642
- max_int16 /= audio_max
643
- audio_opt = (audio_opt * max_int16).astype(np.int16)
644
- del pitch, pitchf, sid
645
- if torch.cuda.is_available():
646
- torch.cuda.empty_cache()
647
- return audio_opt