import argparse import random import json import re from sentence_transformers import SentenceTransformer from sentence_transformers.util import semantic_search, cos_sim from tqdm.auto import tqdm from datasets import load_dataset from common import clean_answer, clean_question def find_hard_negative_ctxs(dataset, dataset_embeddings, embedding_index: int, exclude_answer_patterns, similarity_threshold=[0.5, 0.6], k=25, min_count=3): hard_negative_ctxs = [] results = semantic_search(dataset_embeddings[embedding_index], dataset_embeddings, top_k=k, score_function=cos_sim) # list if dicts # [{'corpus_id': 8, 'score': -0.019427383318543434}, # ... # {'corpus_id': 10, 'score': -0.09040290117263794}] # hard negative are most similar and negatives are most disimilar to embedding_index hard_negative_results = results[0][1:k + 1] assert len(hard_negative_results) > min_count * 2 for r in hard_negative_results: example = dataset[r["corpus_id"]] if similarity_threshold[0] < r["score"] <= similarity_threshold[1]: for a in example["answers"]["text"]: hard_negative_ctxs.append({"title": "", "text": clean_answer(a)}) if len(hard_negative_ctxs) > min_count: break return hard_negative_ctxs[:min_count] def find_negative_ctxs(dataset, dataset_embeddings, embedding_index: int, exclude_answer_patterns, similarity_threshold=0.1, k=7, min_count=3): negative_ctxs = [] random_sample = random.sample(range(len(dataset_embeddings)), k * 20) similarities = cos_sim(dataset_embeddings[embedding_index], dataset_embeddings[random_sample])[0].tolist() for idx, score in enumerate(similarities): if score < similarity_threshold: example = dataset[random_sample[idx]] for a in example["answers"]["text"]: negative_ctxs.append({"title": "", "text": clean_answer(a)}) if len(negative_ctxs) > min_count: break return negative_ctxs[:min_count] def generate_dpr_training_file(args): embedder = SentenceTransformer(args.embedding_model) eli5_train_set = load_dataset("vblagoje/lfqa", split="train") eli5_validation_set = load_dataset("vblagoje/lfqa", split="validation") eli5_test_set = load_dataset("vblagoje/lfqa", split="test") train_set = embedder.encode([example["title"] for example in eli5_train_set], convert_to_tensor=True, show_progress_bar=True) validation_set = embedder.encode([example["title"] for example in eli5_validation_set], convert_to_tensor=True, show_progress_bar=True) test_set = embedder.encode([example["title"] for example in eli5_test_set], convert_to_tensor=True, show_progress_bar=True) exclude_answer_patterns = [re.compile("not sure what you"), re.compile("\n\n >")] for dataset_name, dataset, dataset_embeddings in zip(["train", "validation", "test"], [eli5_train_set, eli5_validation_set, eli5_test_set], [train_set, validation_set, test_set]): min_elements = 3 skip_count = 0 progress_bar = tqdm(range(len(dataset)), desc="Creating DPR formatted question/passage docs") with open('eli5-dpr-' + dataset_name + '.jsonl', 'w') as fp: for idx, example in enumerate(dataset): negative_ctxs = find_negative_ctxs(dataset, dataset_embeddings, idx, exclude_answer_patterns) hard_negative_ctxs = find_hard_negative_ctxs(dataset, dataset_embeddings, idx, exclude_answer_patterns) positive_context = [{"text": clean_answer(a), "title": ""} for a in example["answers"]["text"] if not any([p.search(a) for p in exclude_answer_patterns])] if not positive_context: positive_context = [{"text": clean_answer(a), "title": ""} for a in example["answers"]["text"]] if len(positive_context) > 0 and len(negative_ctxs) > 0 and len(hard_negative_ctxs) >= min_elements: json.dump({"id": example["q_id"], "question": clean_question(example["title"]), "positive_ctxs": positive_context[:min_elements], "negative_ctxs": negative_ctxs[:min_elements], "hard_negative_ctxs": hard_negative_ctxs[:min_elements]}, fp) fp.write("\n") else: skip_count += 1 progress_bar.update(1) print(f"Skipped {skip_count} questions") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Creates DPR training file from LFQA dataset") parser.add_argument( "--embedding_model", default="all-mpnet-base-v2", help="Embedding model to use for question encoding and semantic search", ) main_args, _ = parser.parse_known_args() generate_dpr_training_file(main_args)