|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
SchedulerMixin, |
|
UNet2DConditionModel, |
|
UniPCMultistepScheduler, |
|
) |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from interpolation import ( |
|
InnerInterpolatedAttnProcessor, |
|
OuterInterpolatedAttnProcessor, |
|
generate_beta_tensor, |
|
linear_interpolation, |
|
slerp, |
|
spherical_interpolation, |
|
) |
|
|
|
|
|
class InterpolationStableDiffusionPipeline: |
|
""" |
|
Diffusion Pipeline that generates interpolated images |
|
""" |
|
|
|
def __init__( |
|
self, |
|
repo_name: str = "CompVis/stable-diffusion-v1-4", |
|
scheduler_name: str = "ddim", |
|
frozen: bool = True, |
|
guidance_scale: float = 7.5, |
|
scheduler: Optional[SchedulerMixin] = None, |
|
cache_dir: Optional[str] = None, |
|
): |
|
|
|
|
|
self.vae = AutoencoderKL.from_pretrained( |
|
repo_name, subfolder="vae", use_safetensors=True, cache_dir=cache_dir |
|
) |
|
self.tokenizer = CLIPTokenizer.from_pretrained( |
|
repo_name, subfolder="tokenizer", cache_dir=cache_dir |
|
) |
|
self.text_encoder = CLIPTextModel.from_pretrained( |
|
repo_name, |
|
subfolder="text_encoder", |
|
use_safetensors=True, |
|
cache_dir=cache_dir, |
|
) |
|
self.unet = UNet2DConditionModel.from_pretrained( |
|
repo_name, subfolder="unet", use_safetensors=True, cache_dir=cache_dir |
|
) |
|
|
|
|
|
if scheduler is not None: |
|
self.scheduler = scheduler |
|
elif scheduler_name == "ddim": |
|
self.scheduler = DDIMScheduler.from_pretrained( |
|
repo_name, subfolder="scheduler", cache_dir=cache_dir |
|
) |
|
elif scheduler_name == "unipc": |
|
self.scheduler = UniPCMultistepScheduler.from_pretrained( |
|
repo_name, subfolder="scheduler", cache_dir=cache_dir |
|
) |
|
else: |
|
raise ValueError( |
|
"Invalid scheduler name (ddim, unipc) and not specify scheduler." |
|
) |
|
|
|
|
|
|
|
self.guidance_scale = guidance_scale |
|
|
|
if frozen: |
|
for param in self.unet.parameters(): |
|
param.requires_grad = False |
|
|
|
for param in self.text_encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
for param in self.vae.parameters(): |
|
param.requires_grad = False |
|
|
|
def to(self, *args, **kwargs): |
|
self.vae.to(*args, **kwargs) |
|
self.text_encoder.to(*args, **kwargs) |
|
self.unet.to(*args, **kwargs) |
|
|
|
def generate_latent( |
|
self, generator: Optional[torch.Generator] = None, torch_device: str = "cpu" |
|
) -> torch.FloatTensor: |
|
""" |
|
Generates a random latent tensor. |
|
|
|
Args: |
|
generator (Optional[torch.Generator], optional): Generator for random number generation. Defaults to None. |
|
torch_device (str, optional): Device to store the tensor. Defaults to "cpu". |
|
|
|
Returns: |
|
torch.FloatTensor: Random latent tensor. |
|
""" |
|
channel = self.unet.config.in_channels |
|
height = self.unet.config.sample_size |
|
width = self.unet.config.sample_size |
|
if generator is None: |
|
latent = torch.randn( |
|
(1, channel, height, width), |
|
device=torch_device, |
|
) |
|
else: |
|
latent = torch.randn( |
|
(1, channel, height, width), |
|
generator=generator, |
|
device=torch_device, |
|
) |
|
return latent |
|
|
|
@torch.no_grad() |
|
def prompt_to_embedding( |
|
self, prompt: str, negative_prompt: str = "" |
|
) -> torch.FloatTensor: |
|
""" |
|
Prepare the text prompt for the diffusion process |
|
|
|
Args: |
|
prompt: str, text prompt |
|
negative_prompt: str, negative text prompt |
|
|
|
Returns: |
|
FloatTensor, text embeddings |
|
""" |
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.torch_device))[ |
|
0 |
|
] |
|
|
|
uncond_input = self.tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_embeddings = self.text_encoder( |
|
uncond_input.input_ids.to(self.torch_device) |
|
)[0] |
|
|
|
text_embeddings = torch.cat([text_embeddings, uncond_embeddings]) |
|
return text_embeddings |
|
|
|
@torch.no_grad() |
|
def interpolate( |
|
self, |
|
latent_start: torch.FloatTensor, |
|
latent_end: torch.FloatTensor, |
|
prompt_start: str, |
|
prompt_end: str, |
|
guide_prompt: Optional[str] = None, |
|
negative_prompt: str = "", |
|
size: int = 7, |
|
num_inference_steps: int = 25, |
|
warmup_ratio: float = 0.5, |
|
early: str = "fused_outer", |
|
late: str = "self", |
|
alpha: Optional[float] = None, |
|
beta: Optional[float] = None, |
|
guidance_scale: Optional[float] = None, |
|
) -> np.ndarray: |
|
""" |
|
Interpolate between two generation |
|
|
|
Args: |
|
latent_start: FloatTensor, latent vector of the first image |
|
latent_end: FloatTensor, latent vector of the second image |
|
prompt_start: str, text prompt of the first image |
|
prompt_end: str, text prompt of the second image |
|
guide_prompt: str, text prompt for the interpolation |
|
negative_prompt: str, negative text prompt |
|
size: int, number of interpolations including starting and ending points |
|
num_inference_steps: int, number of inference steps in scheduler |
|
warmup_ratio: float, ratio of warmup steps |
|
early: str, warmup interpolation methods |
|
late: str, late interpolation methods |
|
alpha: float, alpha parameter for beta distribution |
|
beta: float, beta parameter for beta distribution |
|
guidance_scale: Optional[float], scale for classifier-free guidance |
|
Returns: |
|
Numpy array of interpolated images, shape (size, H, W, 3) |
|
""" |
|
|
|
self.torch_device = self.unet.device |
|
if alpha is None: |
|
alpha = num_inference_steps |
|
if beta is None: |
|
beta = num_inference_steps |
|
if guidance_scale is None: |
|
guidance_scale = self.guidance_scale |
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
latents = spherical_interpolation(latent_start, latent_end, size) |
|
embs_start = self.prompt_to_embedding(prompt_start, negative_prompt) |
|
emb_start = embs_start[0:1] |
|
uncond_emb_start = embs_start[1:2] |
|
embs_end = self.prompt_to_embedding(prompt_end, negative_prompt) |
|
emb_end = embs_end[0:1] |
|
uncond_emb_end = embs_end[1:2] |
|
|
|
|
|
if guide_prompt is not None: |
|
guide_embs = self.prompt_to_embedding(guide_prompt, negative_prompt) |
|
guide_emb = guide_embs[0:1] |
|
uncond_guide_emb = guide_embs[1:2] |
|
embs = torch.cat([emb_start] + [guide_emb] * (size - 2) + [emb_end], dim=0) |
|
uncond_embs = torch.cat( |
|
[uncond_emb_start] + [uncond_guide_emb] * (size - 2) + [uncond_emb_end], |
|
dim=0, |
|
) |
|
else: |
|
embs = linear_interpolation(emb_start, emb_end, size=size) |
|
uncond_embs = linear_interpolation( |
|
uncond_emb_start, uncond_emb_end, size=size |
|
) |
|
|
|
|
|
pure_inner_attn_proc = InnerInterpolatedAttnProcessor( |
|
size=size, |
|
is_fused=False, |
|
alpha=alpha, |
|
beta=beta, |
|
) |
|
fused_inner_attn_proc = InnerInterpolatedAttnProcessor( |
|
size=size, |
|
is_fused=True, |
|
alpha=alpha, |
|
beta=beta, |
|
) |
|
pure_outer_attn_proc = OuterInterpolatedAttnProcessor( |
|
size=size, |
|
is_fused=False, |
|
alpha=alpha, |
|
beta=beta, |
|
) |
|
fused_outer_attn_proc = OuterInterpolatedAttnProcessor( |
|
size=size, |
|
is_fused=True, |
|
alpha=alpha, |
|
beta=beta, |
|
) |
|
self_attn_proc = AttnProcessor2_0() |
|
procs_dict = { |
|
"pure_inner": pure_inner_attn_proc, |
|
"fused_inner": fused_inner_attn_proc, |
|
"pure_outer": pure_outer_attn_proc, |
|
"fused_outer": fused_outer_attn_proc, |
|
"self": self_attn_proc, |
|
} |
|
|
|
|
|
i = 0 |
|
warmup_step = int(num_inference_steps * warmup_ratio) |
|
for t in tqdm(self.scheduler.timesteps): |
|
i += 1 |
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep=t) |
|
with torch.no_grad(): |
|
|
|
if i < warmup_step: |
|
interpolate_attn_proc = procs_dict[early] |
|
else: |
|
interpolate_attn_proc = procs_dict[late] |
|
self.unet.set_attn_processor(processor=interpolate_attn_proc) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=embs |
|
).sample |
|
attn_proc = AttnProcessor() |
|
self.unet.set_attn_processor(processor=attn_proc) |
|
noise_uncond = self.unet( |
|
latent_model_input, t, encoder_hidden_states=uncond_embs |
|
).sample |
|
|
|
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) |
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
with torch.no_grad(): |
|
image = self.vae.decode(latents).sample |
|
images = (image / 2 + 0.5).clamp(0, 1) |
|
images = (images.permute(0, 2, 3, 1) * 255).to(torch.uint8).cpu().numpy() |
|
return images |
|
|
|
@torch.no_grad() |
|
def interpolate_save_gpu( |
|
self, |
|
latent_start: torch.FloatTensor, |
|
latent_end: torch.FloatTensor, |
|
prompt_start: str, |
|
prompt_end: str, |
|
guide_prompt: Optional[str] = None, |
|
negative_prompt: str = "", |
|
size: int = 7, |
|
num_inference_steps: int = 25, |
|
warmup_ratio: float = 0.5, |
|
early: str = "fused_outer", |
|
late: str = "self", |
|
alpha: Optional[float] = None, |
|
beta: Optional[float] = None, |
|
init: str = "linear", |
|
guidance_scale: Optional[float] = None, |
|
) -> np.ndarray: |
|
""" |
|
Interpolate between two generation |
|
|
|
Args: |
|
latent_start: FloatTensor, latent vector of the first image |
|
latent_end: FloatTensor, latent vector of the second image |
|
prompt_start: str, text prompt of the first image |
|
prompt_end: str, text prompt of the second image |
|
guide_prompt: str, text prompt for the interpolation |
|
negative_prompt: str, negative text prompt |
|
size: int, number of interpolations including starting and ending points |
|
num_inference_steps: int, number of inference steps in scheduler |
|
warmup_ratio: float, ratio of warmup steps |
|
early: str, warmup interpolation methods |
|
late: str, late interpolation methods |
|
alpha: float, alpha parameter for beta distribution |
|
beta: float, beta parameter for beta distribution |
|
init: str, interpolation initialization methods |
|
|
|
Returns: |
|
Numpy array of interpolated images, shape (size, H, W, 3) |
|
""" |
|
self.torch_device = self.unet.device |
|
|
|
if alpha is None: |
|
alpha = num_inference_steps |
|
if beta is None: |
|
beta = num_inference_steps |
|
betas = generate_beta_tensor(size, alpha=alpha, beta=beta) |
|
final_images = None |
|
|
|
|
|
for i in range(size - 2): |
|
it = betas[i + 1].item() |
|
if init == "denoising": |
|
images = self.denoising_interpolate( |
|
latent_start, |
|
prompt_start, |
|
prompt_end, |
|
negative_prompt, |
|
interpolated_ratio=it, |
|
timesteps=num_inference_steps, |
|
) |
|
else: |
|
images = self.interpolate_single( |
|
it, |
|
latent_start, |
|
latent_end, |
|
prompt_start, |
|
prompt_end, |
|
guide_prompt=guide_prompt, |
|
num_inference_steps=num_inference_steps, |
|
warmup_ratio=warmup_ratio, |
|
early=early, |
|
late=late, |
|
negative_prompt=negative_prompt, |
|
init=init, |
|
guidance_scale=guidance_scale, |
|
) |
|
if size == 3: |
|
return images |
|
if i == 0: |
|
final_images = images[:2] |
|
elif i == size - 3: |
|
final_images = np.concatenate([final_images, images[1:]], axis=0) |
|
else: |
|
final_images = np.concatenate([final_images, images[1:2]], axis=0) |
|
return final_images |
|
|
|
def interpolate_single( |
|
self, |
|
it, |
|
latent_start: torch.FloatTensor, |
|
latent_end: torch.FloatTensor, |
|
prompt_start: str, |
|
prompt_end: str, |
|
guide_prompt: str = None, |
|
negative_prompt: str = "", |
|
num_inference_steps: int = 25, |
|
warmup_ratio: float = 0.5, |
|
early: str = "fused_outer", |
|
late: str = "self", |
|
init="linear", |
|
guidance_scale: Optional[float] = None, |
|
) -> np.ndarray: |
|
""" |
|
Interpolates between two latent vectors and generates a sequence of images. |
|
|
|
Args: |
|
it (float): Interpolation factor between latent_start and latent_end. |
|
latent_start (torch.FloatTensor): Starting latent vector. |
|
latent_end (torch.FloatTensor): Ending latent vector. |
|
prompt_start (str): Starting prompt for text conditioning. |
|
prompt_end (str): Ending prompt for text conditioning. |
|
guide_prompt (str, optional): Guiding prompt for text conditioning. Defaults to None. |
|
negative_prompt (str, optional): Negative prompt for text conditioning. Defaults to "". |
|
num_inference_steps (int, optional): Number of inference steps. Defaults to 25. |
|
warmup_ratio (float, optional): Ratio of warm-up steps. Defaults to 0.5. |
|
early (str, optional): Early attention processing method. Defaults to "fused_outer". |
|
late (str, optional): Late attention processing method. Defaults to "self". |
|
init (str, optional): Initialization method for interpolation. Defaults to "linear". |
|
guidance_scale (Optional[float], optional): Scale for classifier-free guidance. Defaults to None. |
|
Returns: |
|
numpy.ndarray: Sequence of generated images. |
|
""" |
|
self.torch_device = self.unet.device |
|
if guidance_scale is None: |
|
guidance_scale = self.guidance_scale |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
embs_start = self.prompt_to_embedding(prompt_start, negative_prompt) |
|
emb_start = embs_start[0:1] |
|
uncond_emb_start = embs_start[1:2] |
|
embs_end = self.prompt_to_embedding(prompt_end, negative_prompt) |
|
emb_end = embs_end[0:1] |
|
uncond_emb_end = embs_end[1:2] |
|
|
|
latent_t = slerp(latent_start, latent_end, it) |
|
if guide_prompt is not None: |
|
embs_guide = self.prompt_to_embedding(guide_prompt, negative_prompt) |
|
emb_t = embs_guide[0:1] |
|
else: |
|
if init == "linear": |
|
emb_t = torch.lerp(emb_start, emb_end, it) |
|
else: |
|
emb_t = slerp(emb_start, emb_end, it) |
|
if init == "linear": |
|
uncond_emb_t = torch.lerp(uncond_emb_start, uncond_emb_end, it) |
|
else: |
|
uncond_emb_t = slerp(uncond_emb_start, uncond_emb_end, it) |
|
|
|
latents = torch.cat([latent_start, latent_t, latent_end], dim=0) |
|
embs = torch.cat([emb_start, emb_t, emb_end], dim=0) |
|
uncond_embs = torch.cat([uncond_emb_start, uncond_emb_t, uncond_emb_end], dim=0) |
|
|
|
|
|
pure_inner_attn_proc = InnerInterpolatedAttnProcessor( |
|
t=it, |
|
is_fused=False, |
|
) |
|
fused_inner_attn_proc = InnerInterpolatedAttnProcessor( |
|
t=it, |
|
is_fused=True, |
|
) |
|
pure_outer_attn_proc = OuterInterpolatedAttnProcessor( |
|
t=it, |
|
is_fused=False, |
|
) |
|
fused_outer_attn_proc = OuterInterpolatedAttnProcessor( |
|
t=it, |
|
is_fused=True, |
|
) |
|
self_attn_proc = AttnProcessor() |
|
procs_dict = { |
|
"pure_inner": pure_inner_attn_proc, |
|
"fused_inner": fused_inner_attn_proc, |
|
"pure_outer": pure_outer_attn_proc, |
|
"fused_outer": fused_outer_attn_proc, |
|
"self": self_attn_proc, |
|
} |
|
|
|
i = 0 |
|
warmup_step = int(num_inference_steps * warmup_ratio) |
|
for t in tqdm(self.scheduler.timesteps): |
|
i += 1 |
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep=t) |
|
|
|
with torch.no_grad(): |
|
|
|
if i < warmup_step: |
|
interpolate_attn_proc = procs_dict[early] |
|
else: |
|
interpolate_attn_proc = procs_dict[late] |
|
self.unet.set_attn_processor(processor=interpolate_attn_proc) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=embs |
|
).sample |
|
attn_proc = AttnProcessor() |
|
self.unet.set_attn_processor(processor=attn_proc) |
|
noise_uncond = self.unet( |
|
latent_model_input, t, encoder_hidden_states=uncond_embs |
|
).sample |
|
|
|
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) |
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
with torch.no_grad(): |
|
image = self.vae.decode(latents).sample |
|
images = (image / 2 + 0.5).clamp(0, 1) |
|
images = (images.permute(0, 2, 3, 1) * 255).to(torch.uint8).cpu().numpy() |
|
return images |
|
|
|
def denoising_interpolate( |
|
self, |
|
latents: torch.FloatTensor, |
|
text_1: str, |
|
text_2: str, |
|
negative_prompt: str = "", |
|
interpolated_ratio: float = 1, |
|
timesteps: int = 25, |
|
) -> np.ndarray: |
|
""" |
|
Performs denoising interpolation on the given latents. |
|
|
|
Args: |
|
latents (torch.Tensor): The input latents. |
|
text_1 (str): The first text prompt. |
|
text_2 (str): The second text prompt. |
|
negative_prompt (str, optional): The negative text prompt. Defaults to "". |
|
interpolated_ratio (int, optional): The ratio of interpolation between text_1 and text_2. Defaults to 1. |
|
timesteps (int, optional): The number of timesteps for diffusion. Defaults to 25. |
|
|
|
Returns: |
|
numpy.ndarray: The interpolated images. |
|
""" |
|
self.unet.set_attn_processor(processor=AttnProcessor()) |
|
start_emb = self.prompt_to_embedding(text_1) |
|
end_emb = self.prompt_to_embedding(text_2) |
|
neg_emb = self.prompt_to_embedding(negative_prompt) |
|
uncond_emb = neg_emb[0:1] |
|
emb_1 = start_emb[0:1] |
|
emb_2 = end_emb[0:1] |
|
self.scheduler.set_timesteps(timesteps) |
|
i = 0 |
|
for t in tqdm(self.scheduler.timesteps): |
|
i += 1 |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep=t) |
|
|
|
with torch.no_grad(): |
|
if i < timesteps * interpolated_ratio: |
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=emb_1 |
|
).sample |
|
else: |
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=emb_2 |
|
).sample |
|
noise_uncond = self.unet( |
|
latent_model_input, t, encoder_hidden_states=uncond_emb |
|
).sample |
|
|
|
noise_pred = noise_uncond + self.guidance_scale * ( |
|
noise_pred - noise_uncond |
|
) |
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
latents = 1 / 0.18215 * latents |
|
with torch.no_grad(): |
|
image = self.vae.decode(latents).sample |
|
images = (image / 2 + 0.5).clamp(0, 1) |
|
images = (images.permute(0, 2, 3, 1) * 255).to(torch.uint8).cpu().numpy() |
|
return images |
|
|