File size: 2,797 Bytes
98df760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e310e98
98df760
66f0f5e
 
dbdaaf8
98df760
66f0f5e
b5f7da3
 
66f0f5e
8946319
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
import os
import openai
import gradio as gr
from gradio import ChatInterface
import time

# Get the value of the openai_api_key from environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

# Import things that are needed generically from langchain
from langchain import LLMMathChain, SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.tools import MoveFileTool, format_tool_to_openai_function
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import AIPluginTool

# Question- how can one set up a system message for their Chatbot while using ChatInterface
# Example system message : system = SystemMessage(content = "You are a helpful AI assistant")

# driver
def predict_langchain(user_input, chatbot):

    print(f"Chatbot : {chatbot}")
    chat = ChatOpenAI(temperature=1.0, streaming=True, model='gpt-3.5-turbo-0613')
    messages=[]

    for conv in chatbot:
        human = HumanMessage(content=conv[0])
        ai = AIMessage(content=conv[1])
        messages.append(human)
        messages.append(ai)

    messages.append(HumanMessage(content=user_input))

    # getting gpt3.5's response
    gpt_response = chat(messages)
    return gpt_response.content

def predict(inputs, chatbot):

    print(f"Chatbot : {chatbot}")
    messages = []
    for conv in chatbot:
        user = conv[0]
        messages.append({"role": "user", "content":user })
        if conv[1] is None: 
            break
        assistant = conv[1]
        messages.append({"role": "assistant", "content":assistant})

    # a ChatCompletion request
    response = openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages= messages, # example :  [{'role': 'user', 'content': "What is life? Answer in three words."}],
        temperature=1.0,
        stream=True  # for streaming the output to chatbot
    )

    partial_message = ""
    for chunk in response:
        if len(chunk['choices'][0]['delta']) != 0:
          print(chunk['choices'][0]['delta']['content'])
          partial_message = partial_message + chunk['choices'][0]['delta']['content']
          yield partial_message

title = "🤖ChatGPT Interface"
description = "Chatbots are a popular application of large language models. Using gradio, you can easily build a demo of your chatbot model and share that with your users, or try it yourself using an intuitive chatbot UI."
examples = ["How are you?","What is love?"]


gr.ChatInterface(predict,
    title=title,
    description=description,
    theme='gstaff/xkcd').queue().launch()