kingabzpro commited on
Commit
21e3c04
1 Parent(s): 2373f20

Sync App files

Browse files
Files changed (1) hide show
  1. drug_app.py +26 -13
drug_app.py CHANGED
@@ -4,23 +4,23 @@ import skops.io as sio
4
  pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)
5
 
6
 
7
- def classifier(Age, Sex, BP, Cholesterol, Na_to_K):
8
- """
9
- This function takes input features Age, Sex, BP, Cholesterol, and Na_to_K,
10
- and uses a sklearn pipeline to make a prediction on the glass label.
11
 
12
  Args:
13
- Age (float): The age of the patient
14
- Sex (str): The sex of the patient (M or F)
15
- BP (str): The blood pressure of the patient (HIGH, NORMAL, or LOW)
16
- Cholesterol (str): The cholesterol level of the patient (HIGH or NORMAL)
17
- Na_to_K (float): The ratio of sodium to potassium in the patient's blood
18
 
19
  Returns:
20
- str: A string with the predicted drug label
21
  """
22
- pred_drug = pipe.predict([[Age, Sex, BP, Cholesterol, Na_to_K]])[0]
23
- label = f"Predicted Drug label: **{pred_drug}**"
 
 
24
  return label
25
 
26
 
@@ -42,12 +42,25 @@ examples = [
42
 
43
  title = "Drug Classification"
44
  description = "Enter the details to correctly identify Drug type?"
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  gr.Interface(
47
- fn=classifier,
48
  inputs=inputs,
49
  outputs=outputs,
50
  examples=examples,
51
  title=title,
52
  description=description,
 
 
53
  ).launch()
 
4
  pipe = sio.load("./Model/drug_pipeline.skops", trusted=True)
5
 
6
 
7
+ def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
8
+ """Predict drug based on patient features.
 
 
9
 
10
  Args:
11
+ age (int): Age of patient
12
+ sex (int): Sex of patient (0 for female, 1 for male)
13
+ blood_pressure (int): Blood pressure level
14
+ cholesterol (int): Cholesterol level
15
+ na_to_k_ratio (float): Ratio of sodium to potassium in blood
16
 
17
  Returns:
18
+ str: Predicted drug label
19
  """
20
+ features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
21
+ predicted_drug = pipe.predict([features])[0]
22
+
23
+ label = f"Predicted Drug: {predicted_drug}"
24
  return label
25
 
26
 
 
42
 
43
  title = "Drug Classification"
44
  description = "Enter the details to correctly identify Drug type?"
45
+ article = """<center>
46
+
47
+ [![GitHub Repo stars](https://img.shields.io/github/stars/kingabzpro/CICD-for-Machine-Learning)](https://github.com/kingabzpro/CICD-for-Machine-Learning)[![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-md.svg)](https://huggingface.co/kingabzpro)
48
+
49
+ **This app is a part of the Beginner's Guide to CI/CD for Machine Learning.**
50
+
51
+ **It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions.**
52
+
53
+ [![DataCamp](https://img.shields.io/badge/Datacamp-05192D?style=for-the-badge&logo=datacamp&logoColor=65FF8F)](https://www.datacamp.com/portfolio/kingabzpro)
54
+
55
+ </center>"""
56
 
57
  gr.Interface(
58
+ fn=predict_drug,
59
  inputs=inputs,
60
  outputs=outputs,
61
  examples=examples,
62
  title=title,
63
  description=description,
64
+ article=article,
65
+ theme=gr.themes.Soft(),
66
  ).launch()