File size: 2,400 Bytes
27ac14c
5f3bedf
27ac14c
5f3bedf
27ac14c
5f3bedf
27ac14c
 
 
 
 
 
 
 
 
 
 
dbc2cc3
 
 
27ac14c
 
 
 
f290948
27ac14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c84dd0f
00e0504
27ac14c
 
c84dd0f
 
dfabd41
dbc2cc3
27ac14c
 
6ad7338
 
 
 
 
 
27ac14c
00e0504
 
c84dd0f
ed71130
 
27ac14c
3076e83
bbf5238
 
02a6a6d
6ad7338
27ac14c
 
 
3f2719d
c84dd0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os

import gradio as gr
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings

# Load the API key from environment variables
groq_api_key = os.getenv("Groq_API_Key")

# Initialize the language model with the specified model and API key
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_api_key)

# Initialize the embedding model
embed_model = HuggingFaceEmbeddings(
    model_name="mixedbread-ai/mxbai-embed-large-v1", model_kwargs={"device": "cpu"}
)

# Load the vector store from a local directory
vectorstore = Chroma(
    "Starwars_Vectordb",
    embedding_function=embed_model,
)

# Convert the vector store to a retriever
retriever = vectorstore.as_retriever()

# Define the prompt template for the language model
template = """You are a Star Wars assistant for answering questions. 
    Use the provided context to answer the question. 
    If you don't know the answer, say so. Explain your answer in detail. 
    Do not discuss the context in your response; just provide the answer directly.

    Context: {context}

    Question: {question}
    
    Answer:"""

rag_prompt = PromptTemplate.from_template(template)

# Create the RAG (Retrieval-Augmented Generation) chain
rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
    | StrOutputParser()
)

# Define the function to stream the RAG memory
def rag_memory_stream(text):
    partial_text = ""
    for new_text in rag_chain.stream(text):
        partial_text += new_text
        # Yield the updated conversation history
        yield partial_text


# Set up the Gradio interface
title = "Real-time AI App with Groq API and LangChain"
description = """
<center>
<img src="https://huggingface.co/spaces/kingabzpro/Real-Time-RAG/resolve/main/Images/cover.png" alt="logo" width="550"/>
</center>
"""

demo = gr.Interface(
    title=title,
    description=description,
    fn=rag_memory_stream,
    inputs="text",
    outputs="text",
    live=True,
    batch=True,
    max_batch_size=10000,
    concurrency_limit=16,
    allow_flagging="never",
    theme=gr.themes.Soft(),
)

# Launch the Gradio interface
demo.queue()
demo.launch()