Spaces:
Sleeping
Sleeping
File size: 2,400 Bytes
27ac14c 5f3bedf 27ac14c 5f3bedf 27ac14c 5f3bedf 27ac14c dbc2cc3 27ac14c f290948 27ac14c c84dd0f 00e0504 27ac14c c84dd0f dfabd41 dbc2cc3 27ac14c 6ad7338 27ac14c 00e0504 c84dd0f ed71130 27ac14c 3076e83 bbf5238 02a6a6d 6ad7338 27ac14c 3f2719d c84dd0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import os
import gradio as gr
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
# Load the API key from environment variables
groq_api_key = os.getenv("Groq_API_Key")
# Initialize the language model with the specified model and API key
llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_api_key)
# Initialize the embedding model
embed_model = HuggingFaceEmbeddings(
model_name="mixedbread-ai/mxbai-embed-large-v1", model_kwargs={"device": "cpu"}
)
# Load the vector store from a local directory
vectorstore = Chroma(
"Starwars_Vectordb",
embedding_function=embed_model,
)
# Convert the vector store to a retriever
retriever = vectorstore.as_retriever()
# Define the prompt template for the language model
template = """You are a Star Wars assistant for answering questions.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:"""
rag_prompt = PromptTemplate.from_template(template)
# Create the RAG (Retrieval-Augmented Generation) chain
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
# Define the function to stream the RAG memory
def rag_memory_stream(text):
partial_text = ""
for new_text in rag_chain.stream(text):
partial_text += new_text
# Yield the updated conversation history
yield partial_text
# Set up the Gradio interface
title = "Real-time AI App with Groq API and LangChain"
description = """
<center>
<img src="https://huggingface.co/spaces/kingabzpro/Real-Time-RAG/resolve/main/Images/cover.png" alt="logo" width="550"/>
</center>
"""
demo = gr.Interface(
title=title,
description=description,
fn=rag_memory_stream,
inputs="text",
outputs="text",
live=True,
batch=True,
max_batch_size=10000,
concurrency_limit=16,
allow_flagging="never",
theme=gr.themes.Soft(),
)
# Launch the Gradio interface
demo.queue()
demo.launch()
|