kingabzpro's picture
Update app.py
85862cc
raw
history blame
2.42 kB
import os
import gradio as gr
HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
title = "Talk To Me Morty"
description = """
<p>
<center>
The bot was trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.
<img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/>
</center>
</p>
"""
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center><center><img src='https://visitor-badge.glitch.me/badge?page_id=kingabzpro/Rick_and_Morty_Bot' alt='visitor badge'></center></p>"
examples = [["How are you Rick?"]]
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
#print('decoded_response-->>'+str(response))
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
#print('response-->>'+str(response))
return response, history
gr.Interface(fn=predict,
title=title,
description=description,
examples=examples,
flagging_callback = hf_writer,
allow_flagging = "manual",
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme='gradio/seafoam').launch()
#theme ="grass",
#title = title,
#flagging_callback=hf_writer,
#description = description,
#article = article