Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags") | |
title = "Have Fun With RickBot" | |
description = """ | |
<p> | |
<center> | |
The bot is trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT. | |
<img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="250"/> | |
</center> | |
</p> | |
""" | |
article = "<p style='text-align: center'><a href='https://medium.com/geekculture/discord-bot-using-dailogpt-and-huggingface-api-c71983422701' target='_blank'>Complete Tutorial</a></p><p style='text-align: center'><a href='https://dagshub.com/kingabzpro/DailoGPT-RickBot' target='_blank'>Project is Available at DAGsHub</a></p></center></p>" | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") | |
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
return response, history | |
gr.Interface(fn = predict, inputs = ["textbox","state"], outputs = ["chatbot","state"],allow_flagging = "manual",theme ="grass",title = title, flagging_callback = hf_writer, description = description, article = article ).launch(enable_queue=True) # customizes the input component | |
#theme ="grass", | |
#title = title, | |
#flagging_callback=hf_writer, | |
#description = description, | |
#article = article |