import gradio as gr import os import subprocess subprocess.run(["pip", "install","gradio==2.8.0b10"]) HF_TOKEN = os.getenv('HF_TOKEN') hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags") title = "Have Fun With RickBot" description = """

The bot is trained on Rick and Morty dialogues Kaggle Dataset using DialoGPT.

""" article = "

Complete Tutorial

Project is Available at DAGsHub

" from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot") model = AutoModelForCausalLM.from_pretrained("kingabzpro/DialoGPT-small-Rick-Bot") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=80, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n") return response, history gr.Interface(predict,"textbox","chatbot").launch(enable_queue=True) # customizes the input component #theme ="grass", #title = title, #flagging_callback=hf_writer, #description = description, #article = article