Dean commited on
Commit
13f0309
·
1 Parent(s): 479e632

Successfully configured the dataloader and trained for one epoch. Results are not so good, but it's something. Still the Fastaiv1 looked better qualitatively

Browse files
Files changed (3) hide show
  1. dvc.lock +5 -5
  2. src/code/make_dataset.py +3 -1
  3. src/code/training.py +16 -2
dvc.lock CHANGED
@@ -3,21 +3,21 @@ process_data:
3
  src/data/processed
4
  deps:
5
  - path: src/code/make_dataset.py
6
- md5: b15a09b30657f303d62215ceb73c6f4f
7
  - path: src/data/raw/nyu_depth_v2_labeled.mat
8
  md5: 520609c519fba3ba5ac58c8fefcc3530
9
  - path: src/data/raw/splits.mat
10
  md5: 08e3c3aea27130ac7c01ffd739a4535f
11
  outs:
12
  - path: src/data/processed/
13
- md5: 78d932b016048d527f9e73e1781127cd.dir
14
  train:
15
  cmd: python3 src/code/training.py src/data/processed
16
  deps:
17
  - path: src/code/training.py
18
- md5: d36fea3f2f8524ea040fe7330ce8ba40
19
  - path: src/data/processed/
20
- md5: 78d932b016048d527f9e73e1781127cd.dir
21
  outs:
22
  - path: src/models/
23
- md5: 48f953dd81c67ea0f6958fe4e4226e01.dir
 
3
  src/data/processed
4
  deps:
5
  - path: src/code/make_dataset.py
6
+ md5: 726bf2bed948f73c5c342a96d017539e
7
  - path: src/data/raw/nyu_depth_v2_labeled.mat
8
  md5: 520609c519fba3ba5ac58c8fefcc3530
9
  - path: src/data/raw/splits.mat
10
  md5: 08e3c3aea27130ac7c01ffd739a4535f
11
  outs:
12
  - path: src/data/processed/
13
+ md5: 77adb8603dbf31f3b272e0f51b6c2c29.dir
14
  train:
15
  cmd: python3 src/code/training.py src/data/processed
16
  deps:
17
  - path: src/code/training.py
18
+ md5: 1d5f2b07b208bf062526e5ebfddca043
19
  - path: src/data/processed/
20
+ md5: 77adb8603dbf31f3b272e0f51b6c2c29.dir
21
  outs:
22
  - path: src/models/
23
+ md5: e6f3667c5e3ff28faaf9172adab28107.dir
src/code/make_dataset.py CHANGED
@@ -44,7 +44,9 @@ import cv2
44
  def convert_image(i, scene, depth, image, folder):
45
  img_depth = depth * 1000.0
46
  img_depth_uint16 = img_depth.astype(np.uint16)
47
- cv2.imwrite("%s/%05d_depth.png" % (folder, i), img_depth_uint16)
 
 
48
 
49
  image = image[:, :, ::-1]
50
  image_black_boundary = np.zeros((480, 640, 3), dtype=np.uint8)
 
44
  def convert_image(i, scene, depth, image, folder):
45
  img_depth = depth * 1000.0
46
  img_depth_uint16 = img_depth.astype(np.uint16)
47
+ normalized_depth = np.zeros(img_depth_uint16.shape)
48
+ normalized_depth = cv2.normalize(img_depth_uint16, normalized_depth, 0, 255, cv2.NORM_MINMAX)
49
+ cv2.imwrite("%s/%05d_depth.png" % (folder, i), normalized_depth)
50
 
51
  image = image[:, :, ::-1]
52
  image_black_boundary = np.zeros((480, 640, 3), dtype=np.uint8)
src/code/training.py CHANGED
@@ -3,6 +3,20 @@ import sys
3
  from fastai2.vision.all import *
4
  from torchvision.utils import save_image
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def get_y_fn(x):
8
  y = str(x.absolute()).replace('.jpg', '_depth.png')
@@ -13,7 +27,7 @@ def get_y_fn(x):
13
 
14
  def create_data(data_path):
15
  fnames = get_files(data_path/'train', extensions='.jpg')
16
- data = SegmentationDataLoaders.from_label_func(data_path/'train', bs=4, num_workers=0, fnames=fnames, label_func=get_y_fn)
17
  return data
18
 
19
 
@@ -23,7 +37,7 @@ if __name__ == "__main__":
23
  sys.exit(0)
24
 
25
  data = create_data(Path(sys.argv[1]))
26
- learner = unet_learner(data, resnet34, metrics=rmse, wd=1e-2, n_out=1, loss_func=MSELossFlat(), path='src/')
27
  learner.fine_tune(1)
28
 
29
  learner.save('model')
 
3
  from fastai2.vision.all import *
4
  from torchvision.utils import save_image
5
 
6
+ class ImageImageDataLoaders(DataLoaders):
7
+ "Basic wrapper around several `DataLoader`s with factory methods for Image to Image problems"
8
+ @classmethod
9
+ @delegates(DataLoaders.from_dblock)
10
+ def from_label_func(cls, path, fnames, label_func, valid_pct=0.2, seed=None, item_tfms=None, batch_tfms=None, **kwargs):
11
+ "Create from list of `fnames` in `path`s with `label_func`."
12
+ dblock = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImageBW)),
13
+ splitter=RandomSplitter(valid_pct, seed=seed),
14
+ get_y=label_func,
15
+ item_tfms=item_tfms,
16
+ batch_tfms=batch_tfms)
17
+ res = cls.from_dblock(dblock, fnames, path=path, **kwargs)
18
+ return res
19
+
20
 
21
  def get_y_fn(x):
22
  y = str(x.absolute()).replace('.jpg', '_depth.png')
 
27
 
28
  def create_data(data_path):
29
  fnames = get_files(data_path/'train', extensions='.jpg')
30
+ data = ImageImageDataLoaders.from_label_func(data_path/'train', seed=42, bs=4, num_workers=0, fnames=fnames, label_func=get_y_fn)
31
  return data
32
 
33
 
 
37
  sys.exit(0)
38
 
39
  data = create_data(Path(sys.argv[1]))
40
+ learner = unet_learner(data, resnet34, metrics=rmse, wd=1e-2, n_out=3, loss_func=MSELossFlat(), path='src/')
41
  learner.fine_tune(1)
42
 
43
  learner.save('model')