Dean commited on
Commit
f24654e
·
1 Parent(s): 50b2019

Hopefully finished with the requirements debacle, now using conda but freezing requirements with pip as usual

Browse files
Files changed (5) hide show
  1. .dvc/config +1 -1
  2. .gitignore +1 -0
  3. README.md +8 -1
  4. requirements.txt +96 -171
  5. run_dev_env.sh +2 -2
.dvc/config CHANGED
@@ -1,4 +1,4 @@
1
  [core]
2
  analytics = false
3
  ['remote "dvc-remote"']
4
- url = s3://dagshub-savta-depth
 
1
  [core]
2
  analytics = false
3
  ['remote "dvc-remote"']
4
+ url = gs://dagshub-savta-depth
.gitignore CHANGED
@@ -4,3 +4,4 @@
4
  .ipynb_checkpoints/
5
  .workspace/
6
  aws/
 
 
4
  .ipynb_checkpoints/
5
  .workspace/
6
  aws/
7
+ google-cloud-sdk
README.md CHANGED
@@ -31,13 +31,20 @@ If you'd like to take part, please follow the guide.
31
  $ conda activate savta_depth
32
  $ make requirements
33
  ```
 
 
 
 
 
 
 
34
  * Pull the dvc files to your workspace by typing:
35
 
36
  ```bash
37
  $ dvc checkout #use this to get the data, models etc
38
  ```
39
 
40
- * Note: you might need to install and setup the tools to pull from a remote. Read more in [this guide](https://dagshub.com/docs/getting-started/set-up-remote-storage-for-data-and-models/).
41
  * After you are finished your modification, make sure to do the following:
42
  * Freeze your virtualenv by typing in the terminal:
43
 
 
31
  $ conda activate savta_depth
32
  $ make requirements
33
  ```
34
+
35
+ **Note**: If you don't have a GPU you will need to install pytorch separately and then run make requirements. You can install pytorch for computers without a gpu with the following command:
36
+
37
+ ```bash
38
+ $ conda install pytorch torchvision cpuonly -c pytorch
39
+ ```
40
+
41
  * Pull the dvc files to your workspace by typing:
42
 
43
  ```bash
44
  $ dvc checkout #use this to get the data, models etc
45
  ```
46
 
47
+ **Note**: You might need to install and setup the tools to pull from a remote. Read more in [this guide](https://dagshub.com/docs/getting-started/set-up-remote-storage-for-data-and-models/) on how to setup Google Storage or AWS S3 access.
48
  * After you are finished your modification, make sure to do the following:
49
  * Freeze your virtualenv by typing in the terminal:
50
 
requirements.txt CHANGED
@@ -1,171 +1,96 @@
1
- name: savta_depth
2
- channels:
3
- - pytorch
4
- - fastai
5
- - defaults
6
- - conda-forge
7
- dependencies:
8
- - _libgcc_mutex=0.1=main
9
- - attrs=19.3.0=py_0
10
- - beautifulsoup4=4.9.1=py37_0
11
- - blas=1.0=mkl
12
- - bottleneck=1.3.2=py37heb32a55_1
13
- - brotlipy=0.7.0=py37h7b6447c_1000
14
- - ca-certificates=2020.6.24=0
15
- - catalogue=1.0.0=py37_1
16
- - certifi=2020.6.20=py37_0
17
- - cffi=1.14.0=py37h2e261b9_0
18
- - chardet=3.0.4=py37_1003
19
- - cryptography=2.9.2=py37h1ba5d50_0
20
- - cudatoolkit=10.2.89=hfd86e86_1
21
- - cycler=0.10.0=py37_0
22
- - cymem=2.0.3=py37he6710b0_0
23
- - cython-blis=0.4.1=py37h7b6447c_1
24
- - dataclasses=0.7=py37_0
25
- - fastai=1.0.61=1
26
- - fastcore=1.0.0=pyh39e3cac_0
27
- - fastprogress=1.0.0=pyh39e3cac_0
28
- - freetype=2.10.2=h5ab3b9f_0
29
- - idna=2.10=py_0
30
- - importlib-metadata=1.7.0=py37_0
31
- - importlib_metadata=1.7.0=0
32
- - intel-openmp=2020.1=217
33
- - joblib=0.16.0=py_0
34
- - jpeg=9b=h024ee3a_2
35
- - jsonschema=3.0.2=py37_0
36
- - kiwisolver=1.2.0=py37hfd86e86_0
37
- - lcms2=2.11=h396b838_0
38
- - ld_impl_linux-64=2.33.1=h53a641e_7
39
- - libedit=3.1.20191231=h14c3975_1
40
- - libffi=3.2.1=hd88cf55_4
41
- - libgcc-ng=9.1.0=hdf63c60_0
42
- - libgfortran-ng=7.3.0=hdf63c60_0
43
- - libpng=1.6.37=hbc83047_0
44
- - libstdcxx-ng=9.1.0=hdf63c60_0
45
- - libtiff=4.1.0=h2733197_1
46
- - lz4-c=1.9.2=he6710b0_1
47
- - matplotlib=3.3.1=1
48
- - matplotlib-base=3.3.1=py37h817c723_0
49
- - mkl=2020.1=217
50
- - mkl-service=2.3.0=py37he904b0f_0
51
- - mkl_fft=1.1.0=py37h23d657b_0
52
- - mkl_random=1.1.1=py37h0573a6f_0
53
- - murmurhash=1.0.2=py37he6710b0_0
54
- - ncurses=6.2=he6710b0_1
55
- - ninja=1.10.0=py37hfd86e86_0
56
- - numexpr=2.7.1=py37h423224d_0
57
- - numpy=1.19.1=py37hbc911f0_0
58
- - numpy-base=1.19.1=py37hfa32c7d_0
59
- - nvidia-ml-py3=7.352.0=py_0
60
- - olefile=0.46=py37_0
61
- - openssl=1.1.1g=h7b6447c_0
62
- - packaging=20.4=py_0
63
- - pandas=1.1.0=py37he6710b0_0
64
- - pillow=7.2.0=py37hb39fc2d_0
65
- - pip=20.2.2=py37_0
66
- - plac=0.9.6=py37_1
67
- - preshed=3.0.2=py37he6710b0_1
68
- - pycparser=2.20=py_2
69
- - pyopenssl=19.1.0=py_1
70
- - pyparsing=2.4.7=py_0
71
- - pyrsistent=0.16.0=py37h7b6447c_0
72
- - pysocks=1.7.1=py37_1
73
- - python=3.7.6=cpython_h8356626_6
74
- - python-dateutil=2.8.1=py_0
75
- - python_abi=3.7=1_cp37m
76
- - pytorch=1.6.0=py3.7_cuda10.2.89_cudnn7.6.5_0
77
- - pytz=2020.1=py_0
78
- - pyyaml=5.3.1=py37h7b6447c_1
79
- - readline=8.0=h7b6447c_0
80
- - requests=2.24.0=py_0
81
- - scikit-learn=0.23.1=py37h423224d_0
82
- - scipy=1.5.2=py37h0b6359f_0
83
- - setuptools=49.6.0=py37_0
84
- - six=1.15.0=py_0
85
- - soupsieve=2.0.1=py_0
86
- - spacy=2.3.1=py37hfd86e86_0
87
- - sqlite=3.33.0=h62c20be_0
88
- - srsly=1.0.2=py37he6710b0_0
89
- - thinc=7.4.1=py37hfd86e86_0
90
- - threadpoolctl=2.1.0=pyh5ca1d4c_0
91
- - tk=8.6.10=hbc83047_0
92
- - torchvision=0.7.0=py37_cu102
93
- - tornado=6.0.4=py37h7b6447c_1
94
- - tqdm=4.48.2=py_0
95
- - urllib3=1.25.10=py_0
96
- - wasabi=0.7.1=py_0
97
- - wheel=0.34.2=py37_0
98
- - xz=5.2.5=h7b6447c_0
99
- - yaml=0.2.5=h7b6447c_0
100
- - zipp=3.1.0=py_0
101
- - zlib=1.2.11=h7b6447c_3
102
- - zstd=1.4.5=h9ceee32_0
103
- - pip:
104
- - appdirs==1.4.4
105
- - atpublic==2.0
106
- - backcall==0.2.0
107
- - boto3==1.14.47
108
- - botocore==1.17.47
109
- - cachetools==4.1.1
110
- - colorama==0.4.3
111
- - commonmark==0.9.1
112
- - configobj==5.0.6
113
- - decorator==4.4.2
114
- - dictdiffer==0.8.1
115
- - distro==1.5.0
116
- - docutils==0.15.2
117
- - dpath==2.0.1
118
- - dvc==1.6.0
119
- - flatten-json==0.1.7
120
- - flufl-lock==3.2
121
- - funcy==1.14
122
- - future==0.18.2
123
- - gitdb==4.0.5
124
- - gitpython==3.1.7
125
- - google-api-core==1.22.1
126
- - google-auth==1.20.1
127
- - google-cloud-core==1.4.1
128
- - google-cloud-storage==1.19.0
129
- - google-crc32c==0.1.0
130
- - google-resumable-media==0.7.1
131
- - googleapis-common-protos==1.52.0
132
- - grandalf==0.6
133
- - h5py==2.10.0
134
- - ipython==7.17.0
135
- - ipython-genutils==0.2.0
136
- - jedi==0.17.2
137
- - jmespath==0.10.0
138
- - jsonpath-ng==1.5.1
139
- - nanotime==0.5.2
140
- - networkx==2.4
141
- - opencv-python==4.4.0.42
142
- - parso==0.7.1
143
- - pathspec==0.8.0
144
- - pexpect==4.8.0
145
- - pickleshare==0.7.5
146
- - ply==3.11
147
- - prompt-toolkit==3.0.6
148
- - protobuf==3.13.0
149
- - ptyprocess==0.6.0
150
- - pyasn1==0.4.8
151
- - pyasn1-modules==0.2.8
152
- - pydot==1.4.1
153
- - pygments==2.6.1
154
- - pygtrie==2.3.2
155
- - rich==5.2.1
156
- - rsa==4.6
157
- - ruamel-yaml==0.16.10
158
- - ruamel-yaml-clib==0.2.0
159
- - s3transfer==0.3.3
160
- - shortuuid==1.0.1
161
- - shtab==1.3.1
162
- - smmap==3.0.4
163
- - tabulate==0.8.7
164
- - toml==0.10.1
165
- - traitlets==4.3.3
166
- - typing-extensions==3.7.4.2
167
- - voluptuous==0.11.7
168
- - wcwidth==0.2.5
169
- - zc-lockfile==2.0
170
- prefix: /opt/conda/envs/savta_depth
171
-
 
1
+ appdirs==1.4.4
2
+ atpublic==2.0
3
+ blis==0.4.1
4
+ cachetools==4.1.1
5
+ catalogue==1.0.0
6
+ certifi==2020.6.20
7
+ cffi==1.14.2
8
+ chardet==3.0.4
9
+ colorama==0.4.3
10
+ commonmark==0.9.1
11
+ configobj==5.0.6
12
+ cycler==0.10.0
13
+ cymem==2.0.3
14
+ dataclasses==0.6
15
+ decorator==4.4.2
16
+ dictdiffer==0.8.1
17
+ distro==1.5.0
18
+ dpath==2.0.1
19
+ dvc==1.6.0
20
+ fastai==2.0.0
21
+ fastcore==1.0.0
22
+ fastprogress==1.0.0
23
+ flatten-json==0.1.7
24
+ flufl.lock==3.2
25
+ funcy==1.14
26
+ future==0.18.2
27
+ gitdb==4.0.5
28
+ GitPython==3.1.7
29
+ google-api-core==1.22.1
30
+ google-auth==1.20.1
31
+ google-cloud-core==1.4.1
32
+ google-cloud-storage==1.19.0
33
+ google-crc32c==0.1.0
34
+ google-resumable-media==0.7.1
35
+ googleapis-common-protos==1.52.0
36
+ grandalf==0.6
37
+ h5py==2.10.0
38
+ idna==2.10
39
+ importlib-metadata==1.7.0
40
+ joblib==0.16.0
41
+ jsonpath-ng==1.5.1
42
+ kiwisolver==1.2.0
43
+ matplotlib==3.3.1
44
+ mkl-fft==1.1.0
45
+ mkl-random==1.1.1
46
+ mkl-service==2.3.0
47
+ murmurhash==1.0.2
48
+ nanotime==0.5.2
49
+ networkx==2.4
50
+ numpy==1.19.1
51
+ olefile==0.46
52
+ opencv-python==4.4.0.42
53
+ packaging==20.4
54
+ pandas==1.1.1
55
+ pathspec==0.8.0
56
+ Pillow==7.2.0
57
+ plac==1.1.3
58
+ ply==3.11
59
+ preshed==3.0.2
60
+ protobuf==3.13.0
61
+ pyasn1==0.4.8
62
+ pyasn1-modules==0.2.8
63
+ pycparser==2.20
64
+ pydot==1.4.1
65
+ Pygments==2.6.1
66
+ pygtrie==2.3.2
67
+ pyparsing==2.4.7
68
+ python-dateutil==2.8.1
69
+ pytz==2020.1
70
+ PyYAML==5.3.1
71
+ requests==2.24.0
72
+ rich==5.2.1
73
+ rsa==4.6
74
+ ruamel.yaml==0.16.10
75
+ ruamel.yaml.clib==0.2.0
76
+ scikit-learn==0.23.2
77
+ scipy==1.5.2
78
+ shortuuid==1.0.1
79
+ shtab==1.3.1
80
+ six==1.15.0
81
+ smmap==3.0.4
82
+ spacy==2.3.2
83
+ srsly==1.0.2
84
+ tabulate==0.8.7
85
+ thinc==7.4.1
86
+ threadpoolctl==2.1.0
87
+ toml==0.10.1
88
+ torch==1.6.0
89
+ torchvision==0.7.0
90
+ tqdm==4.48.2
91
+ typing-extensions==3.7.4.3
92
+ urllib3==1.25.10
93
+ voluptuous==0.11.7
94
+ wasabi==0.7.1
95
+ zc.lockfile==2.0
96
+ zipp==3.1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_dev_env.sh CHANGED
@@ -2,6 +2,6 @@ docker run -d \
2
  -p 8080:8080 \
3
  --name "ml-workspace" -v "${PWD}:/workspace" \
4
  --env AUTHENTICATE_VIA_JUPYTER="dagshub_savta" \
5
- --shm-size 512m \
6
  --restart always \
7
- mltooling/ml-workspace:latest
 
2
  -p 8080:8080 \
3
  --name "ml-workspace" -v "${PWD}:/workspace" \
4
  --env AUTHENTICATE_VIA_JUPYTER="dagshub_savta" \
5
+ --shm-size 2G \
6
  --restart always \
7
+ mltooling/ml-workspace-minimal:latest