import yaml from fastai.vision.all import \ DataLoaders, \ delegates, \ DataBlock, \ ImageBlock, \ PILImage, \ PILImageBW, \ RandomSplitter, \ Path, \ get_files, \ L class ImageImageDataLoaders(DataLoaders): """Basic wrapper around several `DataLoader`s with factory methods for Image to Image problems""" @classmethod @delegates(DataLoaders.from_dblock) def from_label_func(cls, path, filenames, label_func, valid_pct=0.2, seed=None, item_transforms=None, batch_transforms=None, **kwargs): """Create from list of `fnames` in `path`s with `label_func`.""" datablock = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImageBW)), get_y=label_func, splitter=RandomSplitter(valid_pct, seed=seed), item_tfms=item_transforms, batch_tfms=batch_transforms) res = cls.from_dblock(datablock, filenames, path=path, **kwargs) return res def get_y_fn(x): y = str(x.absolute()).replace('.jpg', '_depth.png') y = Path(y) return y def create_data(data_path, is_test=False): with open(r"./src/code/params.yml") as f: params = yaml.safe_load(f) filenames = get_files(data_path, extensions='.jpg') if len(filenames) == 0: raise ValueError("Could not find any files in the given path") dataset = ImageImageDataLoaders.from_label_func(data_path, seed=int(params['seed']), bs=int(params['batch_size']), num_workers=int(params['num_workers']), filenames=filenames, label_func=get_y_fn) if is_test: filenames = get_files(Path(data_path), extensions='.jpg') test_files = L([Path(i) for i in filenames]) test_dl = dataset.test_dl(test_files, with_labels=True) return dataset, test_dl return dataset