Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from PIL import Image, ImageOps | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101") | |
dmodel = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101") | |
i1 = gr.inputs.Image(type="pil", label="Input image") | |
i2 = gr.inputs.Number(default=400, label="Custom Width") | |
i3 = gr.inputs.Number(default=400, label="Custom Height") | |
o1 = gr.outputs.Image(type="pil", label="Cropped part") | |
def extract_image(image, custom_width, custom_height): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = dmodel(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Count the number of objects in each area | |
object_counts = {} | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
area_key = (int(box[0] / 100) * 100, int(box[1] / 100) * 100) # Group by areas | |
object_counts[area_key] = object_counts.get(area_key, 0) + 1 | |
# Find the area with the most detected objects | |
most_objects_area = max(object_counts, key=object_counts.get) | |
# Calculate the center of the area with most objects | |
center_x = most_objects_area[0] + custom_width / 2 | |
center_y = most_objects_area[1] + custom_height / 2 | |
# Adjust cropping coordinates to centralize the area | |
xmin = int((center_x - custom_width / 2)- 10) | |
ymin = int((center_y - custom_height / 2)- 10) | |
xmax = int((center_x + custom_width / 2)+ 10) | |
ymax = int((center_y + custom_height / 2)+ 10) | |
# Apply a bleed of at least 10 pixels on all sides | |
xmin = max(0, xmin) | |
ymin = max(0, ymin) | |
xmax = min(image.width, xmax ) | |
ymax = min(image.height, ymax) | |
cropped_image = image.crop((xmin, ymin, xmax, ymax)) | |
return cropped_image | |
title = "Auto Crop" | |
description = "<p style='color:black'>Crop an image with the area containing the most detected objects. </p>" | |
examples = [['ex3.jpg', 800, 400], ['cat.png', 400, 400]] | |
gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1], title=title, description=description, examples=examples, enable_queue=True).launch() | |