Spaces:
Runtime error
Runtime error
social
Browse files
app.py
CHANGED
@@ -8,17 +8,13 @@ feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101
|
|
8 |
dmodel = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
9 |
|
10 |
i1 = gr.inputs.Image(type="pil", label="Input image")
|
11 |
-
i2 = gr.inputs.
|
12 |
-
i3 = gr.inputs.Number(default=
|
13 |
-
i4 = gr.inputs.Number(default=400, label="Custom Width (optional)")
|
14 |
-
i5 = gr.inputs.Number(default=400, label="Custom Height (optional)")
|
15 |
o1 = gr.outputs.Image(type="pil", label="Cropped part")
|
16 |
-
o2 = gr.outputs.Textbox(label="Similarity score")
|
17 |
|
18 |
-
def extract_image(image,
|
19 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
20 |
outputs = dmodel(**inputs)
|
21 |
-
pout = ""
|
22 |
|
23 |
target_sizes = torch.tensor([image.size[::-1]])
|
24 |
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
@@ -53,9 +49,8 @@ def extract_image(image, text, prob, custom_width, custom_height):
|
|
53 |
# Return the coordinates of the cropped area
|
54 |
coordinates = f"xmin: {xmin}, ymin: {ymin}, xmax: {xmax}, ymax: {ymax}"
|
55 |
|
56 |
-
return cropped_image
|
57 |
|
58 |
-
title = "ClipnCrop"
|
59 |
description = "<p style='color:white'>Crop an image with the area containing the most detected objects while maintaining custom dimensions and adding a 10-pixel bleed. The area is centralized within the custom dimensions.</p>"
|
60 |
examples = [['ex3.jpg', 'people', 0.96, 800, 400], ['ex2.jpg', 'smiling face', 0.85, 300, 400]]
|
61 |
-
gr.Interface(fn=extract_image, inputs=[i1, i2, i3
|
|
|
8 |
dmodel = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
9 |
|
10 |
i1 = gr.inputs.Image(type="pil", label="Input image")
|
11 |
+
i2 = gr.inputs.Number(default=400, label="Custom Width (optional)")
|
12 |
+
i3 = gr.inputs.Number(default=400, label="Custom Height (optional)")
|
|
|
|
|
13 |
o1 = gr.outputs.Image(type="pil", label="Cropped part")
|
|
|
14 |
|
15 |
+
def extract_image(image, custom_width, custom_height):
|
16 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
17 |
outputs = dmodel(**inputs)
|
|
|
18 |
|
19 |
target_sizes = torch.tensor([image.size[::-1]])
|
20 |
results = feature_extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
|
|
49 |
# Return the coordinates of the cropped area
|
50 |
coordinates = f"xmin: {xmin}, ymin: {ymin}, xmax: {xmax}, ymax: {ymax}"
|
51 |
|
52 |
+
return cropped_image
|
53 |
|
|
|
54 |
description = "<p style='color:white'>Crop an image with the area containing the most detected objects while maintaining custom dimensions and adding a 10-pixel bleed. The area is centralized within the custom dimensions.</p>"
|
55 |
examples = [['ex3.jpg', 'people', 0.96, 800, 400], ['ex2.jpg', 'smiling face', 0.85, 300, 400]]
|
56 |
+
gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1], title=title, description=description, examples=examples, enable_queue=True).launch()
|