Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
import re | |
import tempfile | |
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
import librosa | |
import numpy as np | |
import torch | |
from torch import no_grad, LongTensor | |
import commons | |
import utils | |
import gradio as gr | |
import gradio.utils as gr_utils | |
import gradio.processing_utils as gr_processing_utils | |
import ONNXVITS_infer | |
import models | |
from text import text_to_sequence, _clean_text | |
from text.symbols import symbols | |
from mel_processing import spectrogram_torch | |
import psutil | |
from datetime import datetime | |
import webbrowser | |
from text import text_to_sequence, _clean_text | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
language_marks = { | |
"Japanese": "", | |
"日本語": "[JA]", | |
"简体中文": "[ZH]", | |
"English": "[EN]", | |
"Mix": "", | |
} | |
lang = ['日本語', '简体中文', 'English', 'Mix'] | |
def get_text(text, hps, is_symbol): | |
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
def create_tts_fn(model, hps, speaker_ids): | |
def tts_fn(text, speaker, language, speed): | |
if language is not None: | |
text = language_marks[language] + text + language_marks[language] | |
speaker_id = speaker_ids[speaker] | |
stn_tst = get_text(text, hps, False) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) | |
sid = LongTensor([speaker_id]).to(device) | |
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, | |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() | |
del stn_tst, x_tst, x_tst_lengths, sid | |
return "Success", (hps.data.sampling_rate, audio) | |
return tts_fn | |
def create_vc_fn(model, hps, speaker_ids): | |
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio): | |
input_audio = record_audio if record_audio is not None else upload_audio | |
if input_audio is None: | |
return "You need to record or upload an audio", None | |
sampling_rate, audio = input_audio | |
original_speaker_id = speaker_ids[original_speaker] | |
target_speaker_id = speaker_ids[target_speaker] | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
if sampling_rate != hps.data.sampling_rate: | |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) | |
with no_grad(): | |
y = torch.FloatTensor(audio) | |
y = y / max(-y.min(), y.max()) / 0.99 | |
y = y.to(device) | |
y = y.unsqueeze(0) | |
spec = spectrogram_torch(y, hps.data.filter_length, | |
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, | |
center=False).to(device) | |
spec_lengths = LongTensor([spec.size(-1)]).to(device) | |
sid_src = LongTensor([original_speaker_id]).to(device) | |
sid_tgt = LongTensor([target_speaker_id]).to(device) | |
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ | |
0, 0].data.cpu().float().numpy() | |
del y, spec, spec_lengths, sid_src, sid_tgt | |
return "Success", (hps.data.sampling_rate, audio) | |
return vc_fn | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_dir", default="./inference/G_latest.pth", help="directory to your fine-tuned model") | |
parser.add_argument("--config_dir", default="./inference/finetune_speaker.json", help="directory to your model config file") | |
parser.add_argument("--share", default=False, help="make link public (used in colab)") | |
args = parser.parse_args() | |
hps = utils.get_hparams_from_file(args.config_dir) | |
net_g = SynthesizerTrn( | |
len(hps.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(args.model_dir, net_g, None) | |
speaker_ids = hps.speakers | |
speakers = list(hps.speakers.keys()) | |
tts_fn = create_tts_fn(net_g, hps, speaker_ids) | |
vc_fn = create_vc_fn(net_g, hps, speaker_ids) | |
app = gr.Blocks() | |
with app: | |
with gr.Tab("Text-to-Speech"): | |
with gr.Row(): | |
with gr.Column(): | |
textbox = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value="こんにちわ。", elem_id=f"tts-input") | |
# select character | |
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character') | |
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language') | |
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, | |
label='速度 Speed') | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message") | |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn = gr.Button("Generate!") | |
btn.click(tts_fn, | |
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,], | |
outputs=[text_output, audio_output], api_name="btn") | |
with gr.Tab("Voice Conversion"): | |
gr.Markdown(""" | |
录制或上传声音,并选择要转换的音色。 | |
""") | |
with gr.Column(): | |
record_audio = gr.Audio(label="record your voice", source="microphone") | |
upload_audio = gr.Audio(label="or upload audio here", source="upload") | |
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker") | |
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker") | |
with gr.Column(): | |
message_box = gr.Textbox(label="Message") | |
converted_audio = gr.Audio(label='converted audio') | |
btn = gr.Button("Convert!") | |
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio], | |
outputs=[message_box, converted_audio]) | |
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) | |