Spaces:
Runtime error
Runtime error
kiramayatu
commited on
Commit
•
2fbb3ac
1
Parent(s):
5091c1d
Delete VITS-fast-fine-tuning
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- VITS-fast-fine-tuning/.idea/.gitignore +0 -3
- VITS-fast-fine-tuning/.idea/VITS_voice_conversion.iml +0 -12
- VITS-fast-fine-tuning/.idea/inspectionProfiles/Project_Default.xml +0 -154
- VITS-fast-fine-tuning/.idea/inspectionProfiles/profiles_settings.xml +0 -6
- VITS-fast-fine-tuning/.idea/misc.xml +0 -4
- VITS-fast-fine-tuning/.idea/modules.xml +0 -8
- VITS-fast-fine-tuning/.idea/vcs.xml +0 -6
- VITS-fast-fine-tuning/DATA.MD +0 -42
- VITS-fast-fine-tuning/DATA_EN.MD +0 -46
- VITS-fast-fine-tuning/LICENSE +0 -201
- VITS-fast-fine-tuning/README.md +0 -55
- VITS-fast-fine-tuning/README_ZH.md +0 -60
- VITS-fast-fine-tuning/VC_inference.py +0 -139
- VITS-fast-fine-tuning/attentions.py +0 -303
- VITS-fast-fine-tuning/cmd_inference.py +0 -106
- VITS-fast-fine-tuning/commons.py +0 -164
- VITS-fast-fine-tuning/configs/modified_finetune_speaker.json +0 -172
- VITS-fast-fine-tuning/configs/uma_trilingual.json +0 -54
- VITS-fast-fine-tuning/data_utils.py +0 -267
- VITS-fast-fine-tuning/denoise_audio.py +0 -18
- VITS-fast-fine-tuning/download_model.py +0 -4
- VITS-fast-fine-tuning/download_video.py +0 -37
- VITS-fast-fine-tuning/finetune_speaker_v2.py +0 -321
- VITS-fast-fine-tuning/inference/G_latest.pth +0 -3
- VITS-fast-fine-tuning/inference/ONNXVITS_inference.py +0 -36
- VITS-fast-fine-tuning/inference/VC_inference.py +0 -139
- VITS-fast-fine-tuning/inference/finetune_speaker.json +0 -147
- VITS-fast-fine-tuning/long_audio_transcribe.py +0 -71
- VITS-fast-fine-tuning/losses.py +0 -61
- VITS-fast-fine-tuning/mel_processing.py +0 -112
- VITS-fast-fine-tuning/models.py +0 -533
- VITS-fast-fine-tuning/models_infer.py +0 -402
- VITS-fast-fine-tuning/modules.py +0 -390
- VITS-fast-fine-tuning/monotonic_align/__init__.py +0 -19
- VITS-fast-fine-tuning/monotonic_align/core.pyx +0 -42
- VITS-fast-fine-tuning/monotonic_align/setup.py +0 -9
- VITS-fast-fine-tuning/preprocess_v2.py +0 -151
- VITS-fast-fine-tuning/rearrange_speaker.py +0 -37
- VITS-fast-fine-tuning/requirements.txt +0 -24
- VITS-fast-fine-tuning/short_audio_transcribe.py +0 -111
- VITS-fast-fine-tuning/text/LICENSE +0 -19
- VITS-fast-fine-tuning/text/__init__.py +0 -60
- VITS-fast-fine-tuning/text/__pycache__/__init__.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/cleaners.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/english.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/japanese.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/korean.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/mandarin.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/sanskrit.cpython-37.pyc +0 -0
- VITS-fast-fine-tuning/text/__pycache__/symbols.cpython-37.pyc +0 -0
VITS-fast-fine-tuning/.idea/.gitignore
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
# Default ignored files
|
2 |
-
/shelf/
|
3 |
-
/workspace.xml
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/VITS_voice_conversion.iml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<module type="PYTHON_MODULE" version="4">
|
3 |
-
<component name="NewModuleRootManager">
|
4 |
-
<content url="file://$MODULE_DIR$" />
|
5 |
-
<orderEntry type="jdk" jdkName="Python 3.7 (VITS)" jdkType="Python SDK" />
|
6 |
-
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
-
</component>
|
8 |
-
<component name="PyDocumentationSettings">
|
9 |
-
<option name="format" value="PLAIN" />
|
10 |
-
<option name="myDocStringFormat" value="Plain" />
|
11 |
-
</component>
|
12 |
-
</module>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/inspectionProfiles/Project_Default.xml
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
<component name="InspectionProjectProfileManager">
|
2 |
-
<profile version="1.0">
|
3 |
-
<option name="myName" value="Project Default" />
|
4 |
-
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
-
<option name="ignoredPackages">
|
6 |
-
<value>
|
7 |
-
<list size="132">
|
8 |
-
<item index="0" class="java.lang.String" itemvalue="ccxt" />
|
9 |
-
<item index="1" class="java.lang.String" itemvalue="lz4" />
|
10 |
-
<item index="2" class="java.lang.String" itemvalue="pre-commit" />
|
11 |
-
<item index="3" class="java.lang.String" itemvalue="elegantrl" />
|
12 |
-
<item index="4" class="java.lang.String" itemvalue="setuptools" />
|
13 |
-
<item index="5" class="java.lang.String" itemvalue="ray" />
|
14 |
-
<item index="6" class="java.lang.String" itemvalue="gputil" />
|
15 |
-
<item index="7" class="java.lang.String" itemvalue="google-pasta" />
|
16 |
-
<item index="8" class="java.lang.String" itemvalue="tensorflow-estimator" />
|
17 |
-
<item index="9" class="java.lang.String" itemvalue="scikit-learn" />
|
18 |
-
<item index="10" class="java.lang.String" itemvalue="tabulate" />
|
19 |
-
<item index="11" class="java.lang.String" itemvalue="multitasking" />
|
20 |
-
<item index="12" class="java.lang.String" itemvalue="pickleshare" />
|
21 |
-
<item index="13" class="java.lang.String" itemvalue="pyasn1-modules" />
|
22 |
-
<item index="14" class="java.lang.String" itemvalue="ipython-genutils" />
|
23 |
-
<item index="15" class="java.lang.String" itemvalue="Pygments" />
|
24 |
-
<item index="16" class="java.lang.String" itemvalue="mccabe" />
|
25 |
-
<item index="17" class="java.lang.String" itemvalue="astunparse" />
|
26 |
-
<item index="18" class="java.lang.String" itemvalue="lxml" />
|
27 |
-
<item index="19" class="java.lang.String" itemvalue="Werkzeug" />
|
28 |
-
<item index="20" class="java.lang.String" itemvalue="tensorboard-data-server" />
|
29 |
-
<item index="21" class="java.lang.String" itemvalue="jupyter-client" />
|
30 |
-
<item index="22" class="java.lang.String" itemvalue="pexpect" />
|
31 |
-
<item index="23" class="java.lang.String" itemvalue="click" />
|
32 |
-
<item index="24" class="java.lang.String" itemvalue="ipykernel" />
|
33 |
-
<item index="25" class="java.lang.String" itemvalue="pandas-datareader" />
|
34 |
-
<item index="26" class="java.lang.String" itemvalue="psutil" />
|
35 |
-
<item index="27" class="java.lang.String" itemvalue="jedi" />
|
36 |
-
<item index="28" class="java.lang.String" itemvalue="regex" />
|
37 |
-
<item index="29" class="java.lang.String" itemvalue="tensorboard" />
|
38 |
-
<item index="30" class="java.lang.String" itemvalue="platformdirs" />
|
39 |
-
<item index="31" class="java.lang.String" itemvalue="matplotlib" />
|
40 |
-
<item index="32" class="java.lang.String" itemvalue="idna" />
|
41 |
-
<item index="33" class="java.lang.String" itemvalue="rsa" />
|
42 |
-
<item index="34" class="java.lang.String" itemvalue="decorator" />
|
43 |
-
<item index="35" class="java.lang.String" itemvalue="numpy" />
|
44 |
-
<item index="36" class="java.lang.String" itemvalue="pyasn1" />
|
45 |
-
<item index="37" class="java.lang.String" itemvalue="requests" />
|
46 |
-
<item index="38" class="java.lang.String" itemvalue="tensorflow" />
|
47 |
-
<item index="39" class="java.lang.String" itemvalue="tensorboard-plugin-wit" />
|
48 |
-
<item index="40" class="java.lang.String" itemvalue="Deprecated" />
|
49 |
-
<item index="41" class="java.lang.String" itemvalue="nest-asyncio" />
|
50 |
-
<item index="42" class="java.lang.String" itemvalue="prompt-toolkit" />
|
51 |
-
<item index="43" class="java.lang.String" itemvalue="keras-tuner" />
|
52 |
-
<item index="44" class="java.lang.String" itemvalue="scipy" />
|
53 |
-
<item index="45" class="java.lang.String" itemvalue="dataclasses" />
|
54 |
-
<item index="46" class="java.lang.String" itemvalue="tornado" />
|
55 |
-
<item index="47" class="java.lang.String" itemvalue="google-auth-oauthlib" />
|
56 |
-
<item index="48" class="java.lang.String" itemvalue="black" />
|
57 |
-
<item index="49" class="java.lang.String" itemvalue="toml" />
|
58 |
-
<item index="50" class="java.lang.String" itemvalue="Quandl" />
|
59 |
-
<item index="51" class="java.lang.String" itemvalue="pandas" />
|
60 |
-
<item index="52" class="java.lang.String" itemvalue="termcolor" />
|
61 |
-
<item index="53" class="java.lang.String" itemvalue="pylint" />
|
62 |
-
<item index="54" class="java.lang.String" itemvalue="typing_extensions" />
|
63 |
-
<item index="55" class="java.lang.String" itemvalue="cachetools" />
|
64 |
-
<item index="56" class="java.lang.String" itemvalue="debugpy" />
|
65 |
-
<item index="57" class="java.lang.String" itemvalue="isort" />
|
66 |
-
<item index="58" class="java.lang.String" itemvalue="pytz" />
|
67 |
-
<item index="59" class="java.lang.String" itemvalue="inflection" />
|
68 |
-
<item index="60" class="java.lang.String" itemvalue="Pillow" />
|
69 |
-
<item index="61" class="java.lang.String" itemvalue="traitlets" />
|
70 |
-
<item index="62" class="java.lang.String" itemvalue="absl-py" />
|
71 |
-
<item index="63" class="java.lang.String" itemvalue="protobuf" />
|
72 |
-
<item index="64" class="java.lang.String" itemvalue="joblib" />
|
73 |
-
<item index="65" class="java.lang.String" itemvalue="threadpoolctl" />
|
74 |
-
<item index="66" class="java.lang.String" itemvalue="opt-einsum" />
|
75 |
-
<item index="67" class="java.lang.String" itemvalue="python-dateutil" />
|
76 |
-
<item index="68" class="java.lang.String" itemvalue="gpflow" />
|
77 |
-
<item index="69" class="java.lang.String" itemvalue="astroid" />
|
78 |
-
<item index="70" class="java.lang.String" itemvalue="cycler" />
|
79 |
-
<item index="71" class="java.lang.String" itemvalue="gast" />
|
80 |
-
<item index="72" class="java.lang.String" itemvalue="kt-legacy" />
|
81 |
-
<item index="73" class="java.lang.String" itemvalue="appdirs" />
|
82 |
-
<item index="74" class="java.lang.String" itemvalue="tensorflow-probability" />
|
83 |
-
<item index="75" class="java.lang.String" itemvalue="pip" />
|
84 |
-
<item index="76" class="java.lang.String" itemvalue="pyzmq" />
|
85 |
-
<item index="77" class="java.lang.String" itemvalue="certifi" />
|
86 |
-
<item index="78" class="java.lang.String" itemvalue="oauthlib" />
|
87 |
-
<item index="79" class="java.lang.String" itemvalue="pyparsing" />
|
88 |
-
<item index="80" class="java.lang.String" itemvalue="Markdown" />
|
89 |
-
<item index="81" class="java.lang.String" itemvalue="h5py" />
|
90 |
-
<item index="82" class="java.lang.String" itemvalue="wrapt" />
|
91 |
-
<item index="83" class="java.lang.String" itemvalue="kiwisolver" />
|
92 |
-
<item index="84" class="java.lang.String" itemvalue="empyrical" />
|
93 |
-
<item index="85" class="java.lang.String" itemvalue="backcall" />
|
94 |
-
<item index="86" class="java.lang.String" itemvalue="charset-normalizer" />
|
95 |
-
<item index="87" class="java.lang.String" itemvalue="multipledispatch" />
|
96 |
-
<item index="88" class="java.lang.String" itemvalue="pathspec" />
|
97 |
-
<item index="89" class="java.lang.String" itemvalue="jupyter-core" />
|
98 |
-
<item index="90" class="java.lang.String" itemvalue="matplotlib-inline" />
|
99 |
-
<item index="91" class="java.lang.String" itemvalue="ptyprocess" />
|
100 |
-
<item index="92" class="java.lang.String" itemvalue="more-itertools" />
|
101 |
-
<item index="93" class="java.lang.String" itemvalue="mypy-extensions" />
|
102 |
-
<item index="94" class="java.lang.String" itemvalue="cloudpickle" />
|
103 |
-
<item index="95" class="java.lang.String" itemvalue="wcwidth" />
|
104 |
-
<item index="96" class="java.lang.String" itemvalue="requests-oauthlib" />
|
105 |
-
<item index="97" class="java.lang.String" itemvalue="Keras-Preprocessing" />
|
106 |
-
<item index="98" class="java.lang.String" itemvalue="yfinance" />
|
107 |
-
<item index="99" class="java.lang.String" itemvalue="tomli" />
|
108 |
-
<item index="100" class="java.lang.String" itemvalue="urllib3" />
|
109 |
-
<item index="101" class="java.lang.String" itemvalue="six" />
|
110 |
-
<item index="102" class="java.lang.String" itemvalue="parso" />
|
111 |
-
<item index="103" class="java.lang.String" itemvalue="wheel" />
|
112 |
-
<item index="104" class="java.lang.String" itemvalue="ipython" />
|
113 |
-
<item index="105" class="java.lang.String" itemvalue="packaging" />
|
114 |
-
<item index="106" class="java.lang.String" itemvalue="lazy-object-proxy" />
|
115 |
-
<item index="107" class="java.lang.String" itemvalue="grpcio" />
|
116 |
-
<item index="108" class="java.lang.String" itemvalue="dm-tree" />
|
117 |
-
<item index="109" class="java.lang.String" itemvalue="google-auth" />
|
118 |
-
<item index="110" class="java.lang.String" itemvalue="seaborn" />
|
119 |
-
<item index="111" class="java.lang.String" itemvalue="thop" />
|
120 |
-
<item index="112" class="java.lang.String" itemvalue="torch" />
|
121 |
-
<item index="113" class="java.lang.String" itemvalue="torchvision" />
|
122 |
-
<item index="114" class="java.lang.String" itemvalue="d2l" />
|
123 |
-
<item index="115" class="java.lang.String" itemvalue="keyboard" />
|
124 |
-
<item index="116" class="java.lang.String" itemvalue="transformers" />
|
125 |
-
<item index="117" class="java.lang.String" itemvalue="phonemizer" />
|
126 |
-
<item index="118" class="java.lang.String" itemvalue="Unidecode" />
|
127 |
-
<item index="119" class="java.lang.String" itemvalue="nltk" />
|
128 |
-
<item index="120" class="java.lang.String" itemvalue="pinecone-client" />
|
129 |
-
<item index="121" class="java.lang.String" itemvalue="sentence-transformers" />
|
130 |
-
<item index="122" class="java.lang.String" itemvalue="whisper" />
|
131 |
-
<item index="123" class="java.lang.String" itemvalue="datasets" />
|
132 |
-
<item index="124" class="java.lang.String" itemvalue="pyaudio" />
|
133 |
-
<item index="125" class="java.lang.String" itemvalue="torchsummary" />
|
134 |
-
<item index="126" class="java.lang.String" itemvalue="openjtalk" />
|
135 |
-
<item index="127" class="java.lang.String" itemvalue="hydra-core" />
|
136 |
-
<item index="128" class="java.lang.String" itemvalue="museval" />
|
137 |
-
<item index="129" class="java.lang.String" itemvalue="mypy" />
|
138 |
-
<item index="130" class="java.lang.String" itemvalue="hydra-colorlog" />
|
139 |
-
<item index="131" class="java.lang.String" itemvalue="flake8" />
|
140 |
-
</list>
|
141 |
-
</value>
|
142 |
-
</option>
|
143 |
-
</inspection_tool>
|
144 |
-
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
145 |
-
<option name="ignoredIdentifiers">
|
146 |
-
<list>
|
147 |
-
<option value="sentiment_classification.model_predictions.audio_path" />
|
148 |
-
<option value="sentiment_classification.model_predictions.sample_rate" />
|
149 |
-
<option value="sentiment_classification.model_predictions.num_samples" />
|
150 |
-
</list>
|
151 |
-
</option>
|
152 |
-
</inspection_tool>
|
153 |
-
</profile>
|
154 |
-
</component>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/inspectionProfiles/profiles_settings.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<component name="InspectionProjectProfileManager">
|
2 |
-
<settings>
|
3 |
-
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
-
<version value="1.0" />
|
5 |
-
</settings>
|
6 |
-
</component>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/misc.xml
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (VITS)" project-jdk-type="Python SDK" />
|
4 |
-
</project>
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/modules.xml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="ProjectModuleManager">
|
4 |
-
<modules>
|
5 |
-
<module fileurl="file://$PROJECT_DIR$/.idea/VITS_voice_conversion.iml" filepath="$PROJECT_DIR$/.idea/VITS_voice_conversion.iml" />
|
6 |
-
</modules>
|
7 |
-
</component>
|
8 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/.idea/vcs.xml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
-
<project version="4">
|
3 |
-
<component name="VcsDirectoryMappings">
|
4 |
-
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
5 |
-
</component>
|
6 |
-
</project>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/DATA.MD
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
本仓库的pipeline支持多种声音样本上传方式,您只需根据您所持有的样本选择任意一种或其中几种即可。
|
2 |
-
|
3 |
-
1.`.zip`文件打包的,按角色名排列的短音频,该压缩文件结构应如下所示:
|
4 |
-
```
|
5 |
-
Your-zip-file.zip
|
6 |
-
├───Character_name_1
|
7 |
-
├ ├───xxx.wav
|
8 |
-
├ ├───...
|
9 |
-
├ ├───yyy.mp3
|
10 |
-
├ └───zzz.wav
|
11 |
-
├───Character_name_2
|
12 |
-
├ ├───xxx.wav
|
13 |
-
├ ├───...
|
14 |
-
├ ├───yyy.mp3
|
15 |
-
├ └───zzz.wav
|
16 |
-
├───...
|
17 |
-
├
|
18 |
-
└───Character_name_n
|
19 |
-
├───xxx.wav
|
20 |
-
├───...
|
21 |
-
├───yyy.mp3
|
22 |
-
└───zzz.wav
|
23 |
-
```
|
24 |
-
注意音频的格式和名称都不重要,只要它们是音频文件。
|
25 |
-
质量要求:2秒以上,10秒以内,尽量不要有背景噪音。
|
26 |
-
数量要求:一个角色至少10条,最好每个角色20条以上。
|
27 |
-
2. 以角色名命名的长音频文件,音频内只能有单说话人,背景音会被自动去除。命名格式为:`{CharacterName}_{random_number}.wav`
|
28 |
-
(例如:`Diana_234135.wav`, `MinatoAqua_234252.wav`),必须是`.wav`文件,长度要在20分钟以内(否则会内存不足)。
|
29 |
-
|
30 |
-
3. 以角色名命名的长视频文件,视频内只能有单说话人,背景音会被自动去除。命名格式为:`{CharacterName}_{random_number}.mp4`
|
31 |
-
(例如:`Taffy_332452.mp4`, `Dingzhen_957315.mp4`),必须是`.mp4`文件,长度要在20分钟以内(否则会内存不足)。
|
32 |
-
注意:命名中,`CharacterName`必须是英文字符,`random_number`是为了区分同一个角色的多个文件,必须要添加,该数字可以为0~999999之间的任意整数。
|
33 |
-
|
34 |
-
4. 包含多行`{CharacterName}|{video_url}`的`.txt`文件,格式应如下所示:
|
35 |
-
```
|
36 |
-
Char1|https://xyz.com/video1/
|
37 |
-
Char2|https://xyz.com/video2/
|
38 |
-
Char2|https://xyz.com/video3/
|
39 |
-
Char3|https://xyz.com/video4/
|
40 |
-
```
|
41 |
-
视频内只能有单说话人,背景音会被自动去除。目前仅支持来自bilibili的视频,其它网站视频的url还没测试过。
|
42 |
-
若对格式有疑问,可以在[这里](https://drive.google.com/file/d/132l97zjanpoPY4daLgqXoM7HKXPRbS84/view?usp=sharing)找到所有格式对应的数据样本。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/DATA_EN.MD
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
The pipeline of this repo supports multiple voice uploading options,you can choose one or more options depending on the data you have.
|
2 |
-
|
3 |
-
1. Short audios packed by a single `.zip` file, whose file structure should be as shown below:
|
4 |
-
```
|
5 |
-
Your-zip-file.zip
|
6 |
-
├───Character_name_1
|
7 |
-
├ ├───xxx.wav
|
8 |
-
├ ├───...
|
9 |
-
├ ├───yyy.mp3
|
10 |
-
├ └───zzz.wav
|
11 |
-
├───Character_name_2
|
12 |
-
├ ├───xxx.wav
|
13 |
-
├ ├───...
|
14 |
-
├ ├───yyy.mp3
|
15 |
-
├ └───zzz.wav
|
16 |
-
├───...
|
17 |
-
├
|
18 |
-
└───Character_name_n
|
19 |
-
├───xxx.wav
|
20 |
-
├───...
|
21 |
-
├───yyy.mp3
|
22 |
-
└───zzz.wav
|
23 |
-
```
|
24 |
-
Note that the format of the audio files does not matter as long as they are audio files。
|
25 |
-
Quality requirement: >=2s, <=10s, contain as little background sound as possible.
|
26 |
-
Quantity requirement: at least 10 per character, 20+ per character is recommended.
|
27 |
-
2. Long audio files named by character names, which should contain single character voice only. Background sound is
|
28 |
-
acceptable since they will be automatically removed. File name format `{CharacterName}_{random_number}.wav`
|
29 |
-
(E.G. `Diana_234135.wav`, `MinatoAqua_234252.wav`), must be `.wav` files.
|
30 |
-
|
31 |
-
|
32 |
-
3. Long video files named by character names, which should contain single character voice only. Background sound is
|
33 |
-
acceptable since they will be automatically removed. File name format `{CharacterName}_{random_number}.mp4`
|
34 |
-
(E.G. `Taffy_332452.mp4`, `Dingzhen_957315.mp4`), must be `.mp4` files.
|
35 |
-
Note: `CharacterName` must be English characters only, `random_number` is to identify multiple files for one character,
|
36 |
-
which is compulsory to add. It could be a random integer between 0~999999.
|
37 |
-
|
38 |
-
4. A `.txt` containing multiple lines of`{CharacterName}|{video_url}`, which should be formatted as follows:
|
39 |
-
```
|
40 |
-
Char1|https://xyz.com/video1/
|
41 |
-
Char2|https://xyz.com/video2/
|
42 |
-
Char2|https://xyz.com/video3/
|
43 |
-
Char3|https://xyz.com/video4/
|
44 |
-
```
|
45 |
-
One video should contain single speaker only. Currently supports videos links from bilibili, other websites are yet to be tested.
|
46 |
-
Having questions regarding to data format? Fine data samples of all format from [here](https://drive.google.com/file/d/132l97zjanpoPY4daLgqXoM7HKXPRbS84/view?usp=sharing).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/LICENSE
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright [yyyy] [name of copyright owner]
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/README.md
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
[中文文档请点击这里](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/README_ZH.md)
|
2 |
-
# VITS Fast Fine-tuning
|
3 |
-
This repo will guide you to add your own character voices, or even your own voice, into existing VITS TTS model
|
4 |
-
to make it able to do the following tasks in less than 1 hour:
|
5 |
-
|
6 |
-
1. Many-to-many voice conversion between any characters you added & preset characters in the model.
|
7 |
-
2. English, Japanese & Chinese Text-to-Speech synthesis with the characters you added & preset characters
|
8 |
-
|
9 |
-
|
10 |
-
Welcome to play around with the base models!
|
11 |
-
Chinese & English & Japanese:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer) Author: Me
|
12 |
-
|
13 |
-
Chinese & Japanese:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai) Author: [SayaSS](https://github.com/SayaSS)
|
14 |
-
|
15 |
-
|
16 |
-
### Currently Supported Tasks:
|
17 |
-
- [x] Clone character voice from 10+ short audios
|
18 |
-
- [x] Clone character voice from long audio(s) >= 3 minutes (one audio should contain single speaker only)
|
19 |
-
- [x] Clone character voice from videos(s) >= 3 minutes (one video should contain single speaker only)
|
20 |
-
- [x] Clone character voice from BILIBILI video links (one video should contain single speaker only)
|
21 |
-
|
22 |
-
### Currently Supported Characters for TTS & VC:
|
23 |
-
- [x] Any character you wish as long as you have their voices!
|
24 |
-
(Note that voice conversion can only be conducted between any two speakers in the model)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
## Fine-tuning
|
29 |
-
It's recommended to perform fine-tuning on [Google Colab](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
30 |
-
because the original VITS has some dependencies that are difficult to configure.
|
31 |
-
|
32 |
-
### How long does it take?
|
33 |
-
1. Install dependencies (3 min)
|
34 |
-
2. Choose pretrained model to start. The detailed differences between them are described in [Colab Notebook](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
35 |
-
3. Upload the voice samples of the characters you wish to add,see [DATA.MD](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/DATA_EN.MD) for detailed uploading options.
|
36 |
-
4. Start fine-tuning. Time taken varies from 20 minutes ~ 2 hours, depending on the number of voices you uploaded.
|
37 |
-
|
38 |
-
|
39 |
-
## Inference or Usage (Currently support Windows only)
|
40 |
-
0. Remember to download your fine-tuned model!
|
41 |
-
1. Download the latest release
|
42 |
-
2. Put your model & config file into the folder `inference`, which are named `G_latest.pth` and `finetune_speaker.json`, respectively.
|
43 |
-
3. The file structure should be as follows:
|
44 |
-
```
|
45 |
-
inference
|
46 |
-
├───inference.exe
|
47 |
-
├───...
|
48 |
-
├───finetune_speaker.json
|
49 |
-
└───G_latest.pth
|
50 |
-
```
|
51 |
-
4. run `inference.exe`, the browser should pop up automatically.
|
52 |
-
|
53 |
-
## Use in MoeGoe
|
54 |
-
0. Prepare downloaded model & config file, which are named `G_latest.pth` and `moegoe_config.json`, respectively.
|
55 |
-
1. Follow [MoeGoe](https://github.com/CjangCjengh/MoeGoe) page instructions to install, configure path, and use.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/README_ZH.md
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
English Documentation Please Click [here](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/README.md)
|
2 |
-
# VITS 快速微调
|
3 |
-
这个代码库会指导你如何将自定义角色(甚至你自己),加入预训练的VITS模型中,在1小时内的微调使模型具备如下功能:
|
4 |
-
1. 在 模型所包含的任意两个角色 之间进行声线转换
|
5 |
-
2. 以 你加入的角色声线 进行中日英三语 文本到语音合成。
|
6 |
-
|
7 |
-
本项目使用的底模涵盖常见二次元男/女配音声线(来自原神数据集)以及现实世界常见男/女声线(来自VCTK数据集),支持中日英三语,保证能够在微调时快速适应新的声线。
|
8 |
-
|
9 |
-
欢迎体验微调所使用的底模!
|
10 |
-
|
11 |
-
中日英:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer) 作者:我
|
12 |
-
|
13 |
-
中日:[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai) 作者:[SayaSS](https://github.com/SayaSS)
|
14 |
-
|
15 |
-
### 目前支持的任务:
|
16 |
-
- [x] 从 10条以上的短音频 克隆角色声音
|
17 |
-
- [x] 从 3分钟以上的长音频(单个音频只能包含单说话人) 克隆角色声音
|
18 |
-
- [x] 从 3分钟以上的视频(单个视频只能包含单说话人) 克隆角色声音
|
19 |
-
- [x] 通过输入 bilibili视频链接(单个视频只能包含单说话人) 克隆角色声音
|
20 |
-
|
21 |
-
### 目前支持声线转换和中日英三语TTS的角色
|
22 |
-
- [x] 任意角色(只要你有角色的声音样本)
|
23 |
-
(注意:声线转换只能在任意两个存在于模型中的说话人之间进行)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
## 微调
|
29 |
-
建议使用 [Google Colab](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)
|
30 |
-
进行微调任务,因为VITS在多语言情况下的某些环境依赖相当难以配置。
|
31 |
-
### 在Google Colab里,我需要花多长时间?
|
32 |
-
1. 安装依赖 (3 min)
|
33 |
-
2. 选择预训练模型,详细区别参见[Colab 笔记本页面](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)。
|
34 |
-
3. 上传你希望加入的其它角色声音,详细上传方式见[DATA.MD](https://github.com/Plachtaa/VITS-fast-fine-tuning/blob/main/DATA.MD)
|
35 |
-
4. 进行微调,根据选择的微调方式和样本数量不同,花费时长可能在20分钟到2小时不等。
|
36 |
-
|
37 |
-
微调结束后可以直接下载微调好的模型,日后在本地运行(不需要GPU)
|
38 |
-
|
39 |
-
## 本地运行和推理
|
40 |
-
0. 记得下载微调好的模型和config文件!
|
41 |
-
1. 下载最新的Release包(在Github页面的右侧)
|
42 |
-
2. 把下载的模型和config文件放在 `inference`文件夹下, 其文件名分别为 `G_latest.pth` 和 `finetune_speaker.json`。
|
43 |
-
3. 一切准备就绪后,文件结构应该如下所示:
|
44 |
-
```
|
45 |
-
inference
|
46 |
-
├───inference.exe
|
47 |
-
├───...
|
48 |
-
├───finetune_speaker.json
|
49 |
-
└───G_latest.pth
|
50 |
-
```
|
51 |
-
4. 运行 `inference.exe`, 浏览器会自动弹出窗口, 注意其所在路径不能有中文字符或者空格.
|
52 |
-
|
53 |
-
## 在MoeGoe使用
|
54 |
-
0. MoeGoe以及类似其它VITS推理UI使用的config格式略有不同,需要下载的文件为模型`G_latest.pth`和配置文件`moegoe_config.json`
|
55 |
-
1. 按照[MoeGoe](https://github.com/CjangCjengh/MoeGoe)页面的提示配置路径即可使用。
|
56 |
-
2. MoeGoe在输入句子时需要使用相应的语言标记包裹句子才能正常合成。(日语用[JA], 中文用[ZH], 英文用[EN]),例如:
|
57 |
-
[JA]こんにちわ。[JA]
|
58 |
-
[ZH]你好![ZH]
|
59 |
-
[EN]Hello![EN]
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/VC_inference.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import no_grad, LongTensor
|
5 |
-
import argparse
|
6 |
-
import commons
|
7 |
-
from mel_processing import spectrogram_torch
|
8 |
-
import utils
|
9 |
-
from models import SynthesizerTrn
|
10 |
-
import gradio as gr
|
11 |
-
import librosa
|
12 |
-
import webbrowser
|
13 |
-
|
14 |
-
from text import text_to_sequence, _clean_text
|
15 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
-
language_marks = {
|
17 |
-
"Japanese": "",
|
18 |
-
"日本語": "[JA]",
|
19 |
-
"简体中文": "[ZH]",
|
20 |
-
"English": "[EN]",
|
21 |
-
"Mix": "",
|
22 |
-
}
|
23 |
-
lang = ['日本語', '简体中文', 'English', 'Mix']
|
24 |
-
def get_text(text, hps, is_symbol):
|
25 |
-
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
26 |
-
if hps.data.add_blank:
|
27 |
-
text_norm = commons.intersperse(text_norm, 0)
|
28 |
-
text_norm = LongTensor(text_norm)
|
29 |
-
return text_norm
|
30 |
-
|
31 |
-
def create_tts_fn(model, hps, speaker_ids):
|
32 |
-
def tts_fn(text, speaker, language, speed):
|
33 |
-
if language is not None:
|
34 |
-
text = language_marks[language] + text + language_marks[language]
|
35 |
-
speaker_id = speaker_ids[speaker]
|
36 |
-
stn_tst = get_text(text, hps, False)
|
37 |
-
with no_grad():
|
38 |
-
x_tst = stn_tst.unsqueeze(0).to(device)
|
39 |
-
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
40 |
-
sid = LongTensor([speaker_id]).to(device)
|
41 |
-
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
42 |
-
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
43 |
-
del stn_tst, x_tst, x_tst_lengths, sid
|
44 |
-
return "Success", (hps.data.sampling_rate, audio)
|
45 |
-
|
46 |
-
return tts_fn
|
47 |
-
|
48 |
-
def create_vc_fn(model, hps, speaker_ids):
|
49 |
-
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
|
50 |
-
input_audio = record_audio if record_audio is not None else upload_audio
|
51 |
-
if input_audio is None:
|
52 |
-
return "You need to record or upload an audio", None
|
53 |
-
sampling_rate, audio = input_audio
|
54 |
-
original_speaker_id = speaker_ids[original_speaker]
|
55 |
-
target_speaker_id = speaker_ids[target_speaker]
|
56 |
-
|
57 |
-
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
58 |
-
if len(audio.shape) > 1:
|
59 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
60 |
-
if sampling_rate != hps.data.sampling_rate:
|
61 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
62 |
-
with no_grad():
|
63 |
-
y = torch.FloatTensor(audio)
|
64 |
-
y = y / max(-y.min(), y.max()) / 0.99
|
65 |
-
y = y.to(device)
|
66 |
-
y = y.unsqueeze(0)
|
67 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
68 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
69 |
-
center=False).to(device)
|
70 |
-
spec_lengths = LongTensor([spec.size(-1)]).to(device)
|
71 |
-
sid_src = LongTensor([original_speaker_id]).to(device)
|
72 |
-
sid_tgt = LongTensor([target_speaker_id]).to(device)
|
73 |
-
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
74 |
-
0, 0].data.cpu().float().numpy()
|
75 |
-
del y, spec, spec_lengths, sid_src, sid_tgt
|
76 |
-
return "Success", (hps.data.sampling_rate, audio)
|
77 |
-
|
78 |
-
return vc_fn
|
79 |
-
if __name__ == "__main__":
|
80 |
-
parser = argparse.ArgumentParser()
|
81 |
-
parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
|
82 |
-
parser.add_argument("--config_dir", default="./finetune_speaker.json", help="directory to your model config file")
|
83 |
-
parser.add_argument("--share", default=False, help="make link public (used in colab)")
|
84 |
-
|
85 |
-
args = parser.parse_args()
|
86 |
-
hps = utils.get_hparams_from_file(args.config_dir)
|
87 |
-
|
88 |
-
|
89 |
-
net_g = SynthesizerTrn(
|
90 |
-
len(hps.symbols),
|
91 |
-
hps.data.filter_length // 2 + 1,
|
92 |
-
hps.train.segment_size // hps.data.hop_length,
|
93 |
-
n_speakers=hps.data.n_speakers,
|
94 |
-
**hps.model).to(device)
|
95 |
-
_ = net_g.eval()
|
96 |
-
|
97 |
-
_ = utils.load_checkpoint(args.model_dir, net_g, None)
|
98 |
-
speaker_ids = hps.speakers
|
99 |
-
speakers = list(hps.speakers.keys())
|
100 |
-
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
|
101 |
-
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
|
102 |
-
app = gr.Blocks()
|
103 |
-
with app:
|
104 |
-
with gr.Tab("Text-to-Speech"):
|
105 |
-
with gr.Row():
|
106 |
-
with gr.Column():
|
107 |
-
textbox = gr.TextArea(label="Text",
|
108 |
-
placeholder="Type your sentence here",
|
109 |
-
value="こんにちわ。", elem_id=f"tts-input")
|
110 |
-
# select character
|
111 |
-
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
|
112 |
-
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
|
113 |
-
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
|
114 |
-
label='速度 Speed')
|
115 |
-
with gr.Column():
|
116 |
-
text_output = gr.Textbox(label="Message")
|
117 |
-
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
118 |
-
btn = gr.Button("Generate!")
|
119 |
-
btn.click(tts_fn,
|
120 |
-
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
|
121 |
-
outputs=[text_output, audio_output])
|
122 |
-
with gr.Tab("Voice Conversion"):
|
123 |
-
gr.Markdown("""
|
124 |
-
录制或上传声音,并选择要转换的音色。
|
125 |
-
""")
|
126 |
-
with gr.Column():
|
127 |
-
record_audio = gr.Audio(label="record your voice", source="microphone")
|
128 |
-
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
129 |
-
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
|
130 |
-
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
|
131 |
-
with gr.Column():
|
132 |
-
message_box = gr.Textbox(label="Message")
|
133 |
-
converted_audio = gr.Audio(label='converted audio')
|
134 |
-
btn = gr.Button("Convert!")
|
135 |
-
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
136 |
-
outputs=[message_box, converted_audio])
|
137 |
-
webbrowser.open("http://127.0.0.1:7860")
|
138 |
-
app.launch(share=args.share)
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/attentions.py
DELETED
@@ -1,303 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
import commons
|
9 |
-
import modules
|
10 |
-
from modules import LayerNorm
|
11 |
-
|
12 |
-
|
13 |
-
class Encoder(nn.Module):
|
14 |
-
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
-
super().__init__()
|
16 |
-
self.hidden_channels = hidden_channels
|
17 |
-
self.filter_channels = filter_channels
|
18 |
-
self.n_heads = n_heads
|
19 |
-
self.n_layers = n_layers
|
20 |
-
self.kernel_size = kernel_size
|
21 |
-
self.p_dropout = p_dropout
|
22 |
-
self.window_size = window_size
|
23 |
-
|
24 |
-
self.drop = nn.Dropout(p_dropout)
|
25 |
-
self.attn_layers = nn.ModuleList()
|
26 |
-
self.norm_layers_1 = nn.ModuleList()
|
27 |
-
self.ffn_layers = nn.ModuleList()
|
28 |
-
self.norm_layers_2 = nn.ModuleList()
|
29 |
-
for i in range(self.n_layers):
|
30 |
-
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
-
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
-
|
35 |
-
def forward(self, x, x_mask):
|
36 |
-
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
-
x = x * x_mask
|
38 |
-
for i in range(self.n_layers):
|
39 |
-
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
-
y = self.drop(y)
|
41 |
-
x = self.norm_layers_1[i](x + y)
|
42 |
-
|
43 |
-
y = self.ffn_layers[i](x, x_mask)
|
44 |
-
y = self.drop(y)
|
45 |
-
x = self.norm_layers_2[i](x + y)
|
46 |
-
x = x * x_mask
|
47 |
-
return x
|
48 |
-
|
49 |
-
|
50 |
-
class Decoder(nn.Module):
|
51 |
-
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
-
super().__init__()
|
53 |
-
self.hidden_channels = hidden_channels
|
54 |
-
self.filter_channels = filter_channels
|
55 |
-
self.n_heads = n_heads
|
56 |
-
self.n_layers = n_layers
|
57 |
-
self.kernel_size = kernel_size
|
58 |
-
self.p_dropout = p_dropout
|
59 |
-
self.proximal_bias = proximal_bias
|
60 |
-
self.proximal_init = proximal_init
|
61 |
-
|
62 |
-
self.drop = nn.Dropout(p_dropout)
|
63 |
-
self.self_attn_layers = nn.ModuleList()
|
64 |
-
self.norm_layers_0 = nn.ModuleList()
|
65 |
-
self.encdec_attn_layers = nn.ModuleList()
|
66 |
-
self.norm_layers_1 = nn.ModuleList()
|
67 |
-
self.ffn_layers = nn.ModuleList()
|
68 |
-
self.norm_layers_2 = nn.ModuleList()
|
69 |
-
for i in range(self.n_layers):
|
70 |
-
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
-
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
-
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
-
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
-
|
77 |
-
def forward(self, x, x_mask, h, h_mask):
|
78 |
-
"""
|
79 |
-
x: decoder input
|
80 |
-
h: encoder output
|
81 |
-
"""
|
82 |
-
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
-
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
-
x = x * x_mask
|
85 |
-
for i in range(self.n_layers):
|
86 |
-
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
-
y = self.drop(y)
|
88 |
-
x = self.norm_layers_0[i](x + y)
|
89 |
-
|
90 |
-
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
-
y = self.drop(y)
|
92 |
-
x = self.norm_layers_1[i](x + y)
|
93 |
-
|
94 |
-
y = self.ffn_layers[i](x, x_mask)
|
95 |
-
y = self.drop(y)
|
96 |
-
x = self.norm_layers_2[i](x + y)
|
97 |
-
x = x * x_mask
|
98 |
-
return x
|
99 |
-
|
100 |
-
|
101 |
-
class MultiHeadAttention(nn.Module):
|
102 |
-
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
-
super().__init__()
|
104 |
-
assert channels % n_heads == 0
|
105 |
-
|
106 |
-
self.channels = channels
|
107 |
-
self.out_channels = out_channels
|
108 |
-
self.n_heads = n_heads
|
109 |
-
self.p_dropout = p_dropout
|
110 |
-
self.window_size = window_size
|
111 |
-
self.heads_share = heads_share
|
112 |
-
self.block_length = block_length
|
113 |
-
self.proximal_bias = proximal_bias
|
114 |
-
self.proximal_init = proximal_init
|
115 |
-
self.attn = None
|
116 |
-
|
117 |
-
self.k_channels = channels // n_heads
|
118 |
-
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
-
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
-
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
-
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
-
self.drop = nn.Dropout(p_dropout)
|
123 |
-
|
124 |
-
if window_size is not None:
|
125 |
-
n_heads_rel = 1 if heads_share else n_heads
|
126 |
-
rel_stddev = self.k_channels**-0.5
|
127 |
-
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
-
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
-
|
130 |
-
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
-
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
-
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
-
if proximal_init:
|
134 |
-
with torch.no_grad():
|
135 |
-
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
-
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
-
|
138 |
-
def forward(self, x, c, attn_mask=None):
|
139 |
-
q = self.conv_q(x)
|
140 |
-
k = self.conv_k(c)
|
141 |
-
v = self.conv_v(c)
|
142 |
-
|
143 |
-
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
-
|
145 |
-
x = self.conv_o(x)
|
146 |
-
return x
|
147 |
-
|
148 |
-
def attention(self, query, key, value, mask=None):
|
149 |
-
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
-
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
-
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
-
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
-
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
-
|
155 |
-
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
-
if self.window_size is not None:
|
157 |
-
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
-
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
-
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
-
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
-
scores = scores + scores_local
|
162 |
-
if self.proximal_bias:
|
163 |
-
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
-
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
-
if mask is not None:
|
166 |
-
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
-
if self.block_length is not None:
|
168 |
-
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
-
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
-
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
-
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
-
p_attn = self.drop(p_attn)
|
173 |
-
output = torch.matmul(p_attn, value)
|
174 |
-
if self.window_size is not None:
|
175 |
-
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
-
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
-
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
-
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
-
return output, p_attn
|
180 |
-
|
181 |
-
def _matmul_with_relative_values(self, x, y):
|
182 |
-
"""
|
183 |
-
x: [b, h, l, m]
|
184 |
-
y: [h or 1, m, d]
|
185 |
-
ret: [b, h, l, d]
|
186 |
-
"""
|
187 |
-
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
-
return ret
|
189 |
-
|
190 |
-
def _matmul_with_relative_keys(self, x, y):
|
191 |
-
"""
|
192 |
-
x: [b, h, l, d]
|
193 |
-
y: [h or 1, m, d]
|
194 |
-
ret: [b, h, l, m]
|
195 |
-
"""
|
196 |
-
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
-
return ret
|
198 |
-
|
199 |
-
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
-
max_relative_position = 2 * self.window_size + 1
|
201 |
-
# Pad first before slice to avoid using cond ops.
|
202 |
-
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
-
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
-
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
-
if pad_length > 0:
|
206 |
-
padded_relative_embeddings = F.pad(
|
207 |
-
relative_embeddings,
|
208 |
-
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
-
else:
|
210 |
-
padded_relative_embeddings = relative_embeddings
|
211 |
-
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
-
return used_relative_embeddings
|
213 |
-
|
214 |
-
def _relative_position_to_absolute_position(self, x):
|
215 |
-
"""
|
216 |
-
x: [b, h, l, 2*l-1]
|
217 |
-
ret: [b, h, l, l]
|
218 |
-
"""
|
219 |
-
batch, heads, length, _ = x.size()
|
220 |
-
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
-
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
-
|
223 |
-
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
-
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
-
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
-
|
227 |
-
# Reshape and slice out the padded elements.
|
228 |
-
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
-
return x_final
|
230 |
-
|
231 |
-
def _absolute_position_to_relative_position(self, x):
|
232 |
-
"""
|
233 |
-
x: [b, h, l, l]
|
234 |
-
ret: [b, h, l, 2*l-1]
|
235 |
-
"""
|
236 |
-
batch, heads, length, _ = x.size()
|
237 |
-
# padd along column
|
238 |
-
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
-
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
-
# add 0's in the beginning that will skew the elements after reshape
|
241 |
-
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
-
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
-
return x_final
|
244 |
-
|
245 |
-
def _attention_bias_proximal(self, length):
|
246 |
-
"""Bias for self-attention to encourage attention to close positions.
|
247 |
-
Args:
|
248 |
-
length: an integer scalar.
|
249 |
-
Returns:
|
250 |
-
a Tensor with shape [1, 1, length, length]
|
251 |
-
"""
|
252 |
-
r = torch.arange(length, dtype=torch.float32)
|
253 |
-
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
-
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
-
|
256 |
-
|
257 |
-
class FFN(nn.Module):
|
258 |
-
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
-
super().__init__()
|
260 |
-
self.in_channels = in_channels
|
261 |
-
self.out_channels = out_channels
|
262 |
-
self.filter_channels = filter_channels
|
263 |
-
self.kernel_size = kernel_size
|
264 |
-
self.p_dropout = p_dropout
|
265 |
-
self.activation = activation
|
266 |
-
self.causal = causal
|
267 |
-
|
268 |
-
if causal:
|
269 |
-
self.padding = self._causal_padding
|
270 |
-
else:
|
271 |
-
self.padding = self._same_padding
|
272 |
-
|
273 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
-
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
-
self.drop = nn.Dropout(p_dropout)
|
276 |
-
|
277 |
-
def forward(self, x, x_mask):
|
278 |
-
x = self.conv_1(self.padding(x * x_mask))
|
279 |
-
if self.activation == "gelu":
|
280 |
-
x = x * torch.sigmoid(1.702 * x)
|
281 |
-
else:
|
282 |
-
x = torch.relu(x)
|
283 |
-
x = self.drop(x)
|
284 |
-
x = self.conv_2(self.padding(x * x_mask))
|
285 |
-
return x * x_mask
|
286 |
-
|
287 |
-
def _causal_padding(self, x):
|
288 |
-
if self.kernel_size == 1:
|
289 |
-
return x
|
290 |
-
pad_l = self.kernel_size - 1
|
291 |
-
pad_r = 0
|
292 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
-
return x
|
295 |
-
|
296 |
-
def _same_padding(self, x):
|
297 |
-
if self.kernel_size == 1:
|
298 |
-
return x
|
299 |
-
pad_l = (self.kernel_size - 1) // 2
|
300 |
-
pad_r = self.kernel_size // 2
|
301 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/cmd_inference.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
"""该模块用于生成VITS文件
|
2 |
-
使用方法
|
3 |
-
|
4 |
-
python cmd_inference.py -m 模型路径 -c 配置文件路径 -o 输出文件路径 -l 输入的语言 -t 输入文本 -s 合成目标说话人名称
|
5 |
-
|
6 |
-
可选参数
|
7 |
-
-ns 感情变化程度
|
8 |
-
-nsw 音素发音长度
|
9 |
-
-ls 整体语速
|
10 |
-
-on 输出文件的名称
|
11 |
-
|
12 |
-
"""
|
13 |
-
|
14 |
-
from pathlib import Path
|
15 |
-
import utils
|
16 |
-
from models import SynthesizerTrn
|
17 |
-
import torch
|
18 |
-
from torch import no_grad, LongTensor
|
19 |
-
import librosa
|
20 |
-
from text import text_to_sequence, _clean_text
|
21 |
-
import commons
|
22 |
-
import scipy.io.wavfile as wavf
|
23 |
-
import os
|
24 |
-
|
25 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
26 |
-
|
27 |
-
language_marks = {
|
28 |
-
"Japanese": "",
|
29 |
-
"日本語": "[JA]",
|
30 |
-
"简体中文": "[ZH]",
|
31 |
-
"English": "[EN]",
|
32 |
-
"Mix": "",
|
33 |
-
}
|
34 |
-
|
35 |
-
|
36 |
-
def get_text(text, hps, is_symbol):
|
37 |
-
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
38 |
-
if hps.data.add_blank:
|
39 |
-
text_norm = commons.intersperse(text_norm, 0)
|
40 |
-
text_norm = LongTensor(text_norm)
|
41 |
-
return text_norm
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
if __name__ == "__main__":
|
46 |
-
import argparse
|
47 |
-
|
48 |
-
parser = argparse.ArgumentParser(description='vits inference')
|
49 |
-
#必须参数
|
50 |
-
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
|
51 |
-
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
52 |
-
parser.add_argument('-o', '--output_path', type=str, default="output/vits", help='输出文件路径')
|
53 |
-
parser.add_argument('-l', '--language', type=str, default="日本語", help='输入的语言')
|
54 |
-
parser.add_argument('-t', '--text', type=str, help='输入文本')
|
55 |
-
parser.add_argument('-s', '--spk', type=str, help='合成目标说话人名称')
|
56 |
-
#可选参数
|
57 |
-
parser.add_argument('-on', '--output_name', type=str, default="output", help='输出文件的名称')
|
58 |
-
parser.add_argument('-ns', '--noise_scale', type=float,default= .667,help='感情变化程度')
|
59 |
-
parser.add_argument('-nsw', '--noise_scale_w', type=float,default=0.6, help='音素发音长度')
|
60 |
-
parser.add_argument('-ls', '--length_scale', type=float,default=1, help='整体语速')
|
61 |
-
|
62 |
-
args = parser.parse_args()
|
63 |
-
|
64 |
-
model_path = args.model_path
|
65 |
-
config_path = args.config_path
|
66 |
-
output_dir = Path(args.output_path)
|
67 |
-
output_dir.mkdir(parents=True, exist_ok=True)
|
68 |
-
|
69 |
-
language = args.language
|
70 |
-
text = args.text
|
71 |
-
spk = args.spk
|
72 |
-
noise_scale = args.noise_scale
|
73 |
-
noise_scale_w = args.noise_scale_w
|
74 |
-
length = args.length_scale
|
75 |
-
output_name = args.output_name
|
76 |
-
|
77 |
-
hps = utils.get_hparams_from_file(config_path)
|
78 |
-
net_g = SynthesizerTrn(
|
79 |
-
len(hps.symbols),
|
80 |
-
hps.data.filter_length // 2 + 1,
|
81 |
-
hps.train.segment_size // hps.data.hop_length,
|
82 |
-
n_speakers=hps.data.n_speakers,
|
83 |
-
**hps.model).to(device)
|
84 |
-
_ = net_g.eval()
|
85 |
-
_ = utils.load_checkpoint(model_path, net_g, None)
|
86 |
-
|
87 |
-
speaker_ids = hps.speakers
|
88 |
-
|
89 |
-
|
90 |
-
if language is not None:
|
91 |
-
text = language_marks[language] + text + language_marks[language]
|
92 |
-
speaker_id = speaker_ids[spk]
|
93 |
-
stn_tst = get_text(text, hps, False)
|
94 |
-
with no_grad():
|
95 |
-
x_tst = stn_tst.unsqueeze(0).to(device)
|
96 |
-
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
97 |
-
sid = LongTensor([speaker_id]).to(device)
|
98 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
|
99 |
-
length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy()
|
100 |
-
del stn_tst, x_tst, x_tst_lengths, sid
|
101 |
-
|
102 |
-
wavf.write(str(output_dir)+"/"+output_name+".wav",hps.data.sampling_rate,audio)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/commons.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
|
8 |
-
def init_weights(m, mean=0.0, std=0.01):
|
9 |
-
classname = m.__class__.__name__
|
10 |
-
if classname.find("Conv") != -1:
|
11 |
-
m.weight.data.normal_(mean, std)
|
12 |
-
|
13 |
-
|
14 |
-
def get_padding(kernel_size, dilation=1):
|
15 |
-
return int((kernel_size*dilation - dilation)/2)
|
16 |
-
|
17 |
-
|
18 |
-
def convert_pad_shape(pad_shape):
|
19 |
-
l = pad_shape[::-1]
|
20 |
-
pad_shape = [item for sublist in l for item in sublist]
|
21 |
-
return pad_shape
|
22 |
-
|
23 |
-
|
24 |
-
def intersperse(lst, item):
|
25 |
-
result = [item] * (len(lst) * 2 + 1)
|
26 |
-
result[1::2] = lst
|
27 |
-
return result
|
28 |
-
|
29 |
-
|
30 |
-
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
-
"""KL(P||Q)"""
|
32 |
-
kl = (logs_q - logs_p) - 0.5
|
33 |
-
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
-
return kl
|
35 |
-
|
36 |
-
|
37 |
-
def rand_gumbel(shape):
|
38 |
-
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
-
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
-
return -torch.log(-torch.log(uniform_samples))
|
41 |
-
|
42 |
-
|
43 |
-
def rand_gumbel_like(x):
|
44 |
-
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
-
return g
|
46 |
-
|
47 |
-
|
48 |
-
def slice_segments(x, ids_str, segment_size=4):
|
49 |
-
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
-
for i in range(x.size(0)):
|
51 |
-
idx_str = ids_str[i]
|
52 |
-
idx_end = idx_str + segment_size
|
53 |
-
try:
|
54 |
-
ret[i] = x[i, :, idx_str:idx_end]
|
55 |
-
except RuntimeError:
|
56 |
-
print("?")
|
57 |
-
return ret
|
58 |
-
|
59 |
-
|
60 |
-
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
-
b, d, t = x.size()
|
62 |
-
if x_lengths is None:
|
63 |
-
x_lengths = t
|
64 |
-
ids_str_max = x_lengths - segment_size + 1
|
65 |
-
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
-
ret = slice_segments(x, ids_str, segment_size)
|
67 |
-
return ret, ids_str
|
68 |
-
|
69 |
-
|
70 |
-
def get_timing_signal_1d(
|
71 |
-
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
72 |
-
position = torch.arange(length, dtype=torch.float)
|
73 |
-
num_timescales = channels // 2
|
74 |
-
log_timescale_increment = (
|
75 |
-
math.log(float(max_timescale) / float(min_timescale)) /
|
76 |
-
(num_timescales - 1))
|
77 |
-
inv_timescales = min_timescale * torch.exp(
|
78 |
-
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
79 |
-
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
-
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
-
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
-
signal = signal.view(1, channels, length)
|
83 |
-
return signal
|
84 |
-
|
85 |
-
|
86 |
-
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
-
b, channels, length = x.size()
|
88 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
-
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
-
|
91 |
-
|
92 |
-
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
-
b, channels, length = x.size()
|
94 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
-
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
-
|
97 |
-
|
98 |
-
def subsequent_mask(length):
|
99 |
-
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
-
return mask
|
101 |
-
|
102 |
-
|
103 |
-
@torch.jit.script
|
104 |
-
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
-
n_channels_int = n_channels[0]
|
106 |
-
in_act = input_a + input_b
|
107 |
-
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
-
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
-
acts = t_act * s_act
|
110 |
-
return acts
|
111 |
-
|
112 |
-
|
113 |
-
def convert_pad_shape(pad_shape):
|
114 |
-
l = pad_shape[::-1]
|
115 |
-
pad_shape = [item for sublist in l for item in sublist]
|
116 |
-
return pad_shape
|
117 |
-
|
118 |
-
|
119 |
-
def shift_1d(x):
|
120 |
-
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
-
return x
|
122 |
-
|
123 |
-
|
124 |
-
def sequence_mask(length, max_length=None):
|
125 |
-
if max_length is None:
|
126 |
-
max_length = length.max()
|
127 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
-
|
130 |
-
|
131 |
-
def generate_path(duration, mask):
|
132 |
-
"""
|
133 |
-
duration: [b, 1, t_x]
|
134 |
-
mask: [b, 1, t_y, t_x]
|
135 |
-
"""
|
136 |
-
device = duration.device
|
137 |
-
|
138 |
-
b, _, t_y, t_x = mask.shape
|
139 |
-
cum_duration = torch.cumsum(duration, -1)
|
140 |
-
|
141 |
-
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
-
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
-
path = path.view(b, t_x, t_y)
|
144 |
-
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
-
path = path.unsqueeze(1).transpose(2,3) * mask
|
146 |
-
return path
|
147 |
-
|
148 |
-
|
149 |
-
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
-
if isinstance(parameters, torch.Tensor):
|
151 |
-
parameters = [parameters]
|
152 |
-
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
-
norm_type = float(norm_type)
|
154 |
-
if clip_value is not None:
|
155 |
-
clip_value = float(clip_value)
|
156 |
-
|
157 |
-
total_norm = 0
|
158 |
-
for p in parameters:
|
159 |
-
param_norm = p.grad.data.norm(norm_type)
|
160 |
-
total_norm += param_norm.item() ** norm_type
|
161 |
-
if clip_value is not None:
|
162 |
-
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
-
total_norm = total_norm ** (1. / norm_type)
|
164 |
-
return total_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/configs/modified_finetune_speaker.json
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 10,
|
4 |
-
"eval_interval": 100,
|
5 |
-
"seed": 1234,
|
6 |
-
"epochs": 10000,
|
7 |
-
"learning_rate": 0.0002,
|
8 |
-
"betas": [
|
9 |
-
0.8,
|
10 |
-
0.99
|
11 |
-
],
|
12 |
-
"eps": 1e-09,
|
13 |
-
"batch_size": 16,
|
14 |
-
"fp16_run": true,
|
15 |
-
"lr_decay": 0.999875,
|
16 |
-
"segment_size": 8192,
|
17 |
-
"init_lr_ratio": 1,
|
18 |
-
"warmup_epochs": 0,
|
19 |
-
"c_mel": 45,
|
20 |
-
"c_kl": 1.0
|
21 |
-
},
|
22 |
-
"data": {
|
23 |
-
"training_files": "final_annotation_train.txt",
|
24 |
-
"validation_files": "final_annotation_val.txt",
|
25 |
-
"text_cleaners": [
|
26 |
-
"chinese_cleaners"
|
27 |
-
],
|
28 |
-
"max_wav_value": 32768.0,
|
29 |
-
"sampling_rate": 22050,
|
30 |
-
"filter_length": 1024,
|
31 |
-
"hop_length": 256,
|
32 |
-
"win_length": 1024,
|
33 |
-
"n_mel_channels": 80,
|
34 |
-
"mel_fmin": 0.0,
|
35 |
-
"mel_fmax": null,
|
36 |
-
"add_blank": true,
|
37 |
-
"n_speakers": 2,
|
38 |
-
"cleaned_text": true
|
39 |
-
},
|
40 |
-
"model": {
|
41 |
-
"inter_channels": 192,
|
42 |
-
"hidden_channels": 192,
|
43 |
-
"filter_channels": 768,
|
44 |
-
"n_heads": 2,
|
45 |
-
"n_layers": 6,
|
46 |
-
"kernel_size": 3,
|
47 |
-
"p_dropout": 0.1,
|
48 |
-
"resblock": "1",
|
49 |
-
"resblock_kernel_sizes": [
|
50 |
-
3,
|
51 |
-
7,
|
52 |
-
11
|
53 |
-
],
|
54 |
-
"resblock_dilation_sizes": [
|
55 |
-
[
|
56 |
-
1,
|
57 |
-
3,
|
58 |
-
5
|
59 |
-
],
|
60 |
-
[
|
61 |
-
1,
|
62 |
-
3,
|
63 |
-
5
|
64 |
-
],
|
65 |
-
[
|
66 |
-
1,
|
67 |
-
3,
|
68 |
-
5
|
69 |
-
]
|
70 |
-
],
|
71 |
-
"upsample_rates": [
|
72 |
-
8,
|
73 |
-
8,
|
74 |
-
2,
|
75 |
-
2
|
76 |
-
],
|
77 |
-
"upsample_initial_channel": 512,
|
78 |
-
"upsample_kernel_sizes": [
|
79 |
-
16,
|
80 |
-
16,
|
81 |
-
4,
|
82 |
-
4
|
83 |
-
],
|
84 |
-
"n_layers_q": 3,
|
85 |
-
"use_spectral_norm": false,
|
86 |
-
"gin_channels": 256
|
87 |
-
},
|
88 |
-
"symbols": [
|
89 |
-
"_",
|
90 |
-
"\uff1b",
|
91 |
-
"\uff1a",
|
92 |
-
"\uff0c",
|
93 |
-
"\u3002",
|
94 |
-
"\uff01",
|
95 |
-
"\uff1f",
|
96 |
-
"-",
|
97 |
-
"\u201c",
|
98 |
-
"\u201d",
|
99 |
-
"\u300a",
|
100 |
-
"\u300b",
|
101 |
-
"\u3001",
|
102 |
-
"\uff08",
|
103 |
-
"\uff09",
|
104 |
-
"\u2026",
|
105 |
-
"\u2014",
|
106 |
-
" ",
|
107 |
-
"A",
|
108 |
-
"B",
|
109 |
-
"C",
|
110 |
-
"D",
|
111 |
-
"E",
|
112 |
-
"F",
|
113 |
-
"G",
|
114 |
-
"H",
|
115 |
-
"I",
|
116 |
-
"J",
|
117 |
-
"K",
|
118 |
-
"L",
|
119 |
-
"M",
|
120 |
-
"N",
|
121 |
-
"O",
|
122 |
-
"P",
|
123 |
-
"Q",
|
124 |
-
"R",
|
125 |
-
"S",
|
126 |
-
"T",
|
127 |
-
"U",
|
128 |
-
"V",
|
129 |
-
"W",
|
130 |
-
"X",
|
131 |
-
"Y",
|
132 |
-
"Z",
|
133 |
-
"a",
|
134 |
-
"b",
|
135 |
-
"c",
|
136 |
-
"d",
|
137 |
-
"e",
|
138 |
-
"f",
|
139 |
-
"g",
|
140 |
-
"h",
|
141 |
-
"i",
|
142 |
-
"j",
|
143 |
-
"k",
|
144 |
-
"l",
|
145 |
-
"m",
|
146 |
-
"n",
|
147 |
-
"o",
|
148 |
-
"p",
|
149 |
-
"q",
|
150 |
-
"r",
|
151 |
-
"s",
|
152 |
-
"t",
|
153 |
-
"u",
|
154 |
-
"v",
|
155 |
-
"w",
|
156 |
-
"x",
|
157 |
-
"y",
|
158 |
-
"z",
|
159 |
-
"1",
|
160 |
-
"2",
|
161 |
-
"3",
|
162 |
-
"4",
|
163 |
-
"5",
|
164 |
-
"0",
|
165 |
-
"\uff22",
|
166 |
-
"\uff30"
|
167 |
-
],
|
168 |
-
"speakers": {
|
169 |
-
"dingzhen": 0,
|
170 |
-
"taffy": 1
|
171 |
-
}
|
172 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/configs/uma_trilingual.json
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 200,
|
4 |
-
"eval_interval": 1000,
|
5 |
-
"seed": 1234,
|
6 |
-
"epochs": 10000,
|
7 |
-
"learning_rate": 2e-4,
|
8 |
-
"betas": [0.8, 0.99],
|
9 |
-
"eps": 1e-9,
|
10 |
-
"batch_size": 16,
|
11 |
-
"fp16_run": true,
|
12 |
-
"lr_decay": 0.999875,
|
13 |
-
"segment_size": 8192,
|
14 |
-
"init_lr_ratio": 1,
|
15 |
-
"warmup_epochs": 0,
|
16 |
-
"c_mel": 45,
|
17 |
-
"c_kl": 1.0
|
18 |
-
},
|
19 |
-
"data": {
|
20 |
-
"training_files":"../CH_JA_EN_mix_voice/clipped_3_vits_trilingual_annotations.train.txt.cleaned",
|
21 |
-
"validation_files":"../CH_JA_EN_mix_voice/clipped_3_vits_trilingual_annotations.val.txt.cleaned",
|
22 |
-
"text_cleaners":["cjke_cleaners2"],
|
23 |
-
"max_wav_value": 32768.0,
|
24 |
-
"sampling_rate": 22050,
|
25 |
-
"filter_length": 1024,
|
26 |
-
"hop_length": 256,
|
27 |
-
"win_length": 1024,
|
28 |
-
"n_mel_channels": 80,
|
29 |
-
"mel_fmin": 0.0,
|
30 |
-
"mel_fmax": null,
|
31 |
-
"add_blank": true,
|
32 |
-
"n_speakers": 999,
|
33 |
-
"cleaned_text": true
|
34 |
-
},
|
35 |
-
"model": {
|
36 |
-
"inter_channels": 192,
|
37 |
-
"hidden_channels": 192,
|
38 |
-
"filter_channels": 768,
|
39 |
-
"n_heads": 2,
|
40 |
-
"n_layers": 6,
|
41 |
-
"kernel_size": 3,
|
42 |
-
"p_dropout": 0.1,
|
43 |
-
"resblock": "1",
|
44 |
-
"resblock_kernel_sizes": [3,7,11],
|
45 |
-
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
-
"upsample_rates": [8,8,2,2],
|
47 |
-
"upsample_initial_channel": 512,
|
48 |
-
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
-
"n_layers_q": 3,
|
50 |
-
"use_spectral_norm": false,
|
51 |
-
"gin_channels": 256
|
52 |
-
},
|
53 |
-
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "N", "Q", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "s", "t", "u", "v", "w", "x", "y", "z", "\u0251", "\u00e6", "\u0283", "\u0291", "\u00e7", "\u026f", "\u026a", "\u0254", "\u025b", "\u0279", "\u00f0", "\u0259", "\u026b", "\u0265", "\u0278", "\u028a", "\u027e", "\u0292", "\u03b8", "\u03b2", "\u014b", "\u0266", "\u207c", "\u02b0", "`", "^", "#", "*", "=", "\u02c8", "\u02cc", "\u2192", "\u2193", "\u2191", " "]
|
54 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/data_utils.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.utils.data
|
7 |
-
import torchaudio
|
8 |
-
|
9 |
-
import commons
|
10 |
-
from mel_processing import spectrogram_torch
|
11 |
-
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
-
from text import text_to_sequence, cleaned_text_to_sequence
|
13 |
-
"""Multi speaker version"""
|
14 |
-
|
15 |
-
|
16 |
-
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
17 |
-
"""
|
18 |
-
1) loads audio, speaker_id, text pairs
|
19 |
-
2) normalizes text and converts them to sequences of integers
|
20 |
-
3) computes spectrograms from audio files.
|
21 |
-
"""
|
22 |
-
|
23 |
-
def __init__(self, audiopaths_sid_text, hparams, symbols):
|
24 |
-
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
25 |
-
self.text_cleaners = hparams.text_cleaners
|
26 |
-
self.max_wav_value = hparams.max_wav_value
|
27 |
-
self.sampling_rate = hparams.sampling_rate
|
28 |
-
self.filter_length = hparams.filter_length
|
29 |
-
self.hop_length = hparams.hop_length
|
30 |
-
self.win_length = hparams.win_length
|
31 |
-
self.sampling_rate = hparams.sampling_rate
|
32 |
-
|
33 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
34 |
-
|
35 |
-
self.add_blank = hparams.add_blank
|
36 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
37 |
-
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
38 |
-
self.symbols = symbols
|
39 |
-
|
40 |
-
random.seed(1234)
|
41 |
-
random.shuffle(self.audiopaths_sid_text)
|
42 |
-
self._filter()
|
43 |
-
|
44 |
-
def _filter(self):
|
45 |
-
"""
|
46 |
-
Filter text & store spec lengths
|
47 |
-
"""
|
48 |
-
# Store spectrogram lengths for Bucketing
|
49 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
50 |
-
# spec_length = wav_length // hop_length
|
51 |
-
|
52 |
-
audiopaths_sid_text_new = []
|
53 |
-
lengths = []
|
54 |
-
for audiopath, sid, text in self.audiopaths_sid_text:
|
55 |
-
# audiopath = "./user_voice/" + audiopath
|
56 |
-
|
57 |
-
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
58 |
-
audiopaths_sid_text_new.append([audiopath, sid, text])
|
59 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
60 |
-
self.audiopaths_sid_text = audiopaths_sid_text_new
|
61 |
-
self.lengths = lengths
|
62 |
-
|
63 |
-
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
64 |
-
# separate filename, speaker_id and text
|
65 |
-
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
66 |
-
text = self.get_text(text)
|
67 |
-
spec, wav = self.get_audio(audiopath)
|
68 |
-
sid = self.get_sid(sid)
|
69 |
-
return (text, spec, wav, sid)
|
70 |
-
|
71 |
-
def get_audio(self, filename):
|
72 |
-
# audio, sampling_rate = load_wav_to_torch(filename)
|
73 |
-
# if sampling_rate != self.sampling_rate:
|
74 |
-
# raise ValueError("{} {} SR doesn't match target {} SR".format(
|
75 |
-
# sampling_rate, self.sampling_rate))
|
76 |
-
# audio_norm = audio / self.max_wav_value if audio.max() > 10 else audio
|
77 |
-
# audio_norm = audio_norm.unsqueeze(0)
|
78 |
-
audio_norm, sampling_rate = torchaudio.load(filename, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
79 |
-
# spec_filename = filename.replace(".wav", ".spec.pt")
|
80 |
-
# if os.path.exists(spec_filename):
|
81 |
-
# spec = torch.load(spec_filename)
|
82 |
-
# else:
|
83 |
-
# try:
|
84 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
85 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
86 |
-
center=False)
|
87 |
-
spec = spec.squeeze(0)
|
88 |
-
# except NotImplementedError:
|
89 |
-
# print("?")
|
90 |
-
# spec = torch.squeeze(spec, 0)
|
91 |
-
# torch.save(spec, spec_filename)
|
92 |
-
return spec, audio_norm
|
93 |
-
|
94 |
-
def get_text(self, text):
|
95 |
-
if self.cleaned_text:
|
96 |
-
text_norm = cleaned_text_to_sequence(text, self.symbols)
|
97 |
-
else:
|
98 |
-
text_norm = text_to_sequence(text, self.text_cleaners)
|
99 |
-
if self.add_blank:
|
100 |
-
text_norm = commons.intersperse(text_norm, 0)
|
101 |
-
text_norm = torch.LongTensor(text_norm)
|
102 |
-
return text_norm
|
103 |
-
|
104 |
-
def get_sid(self, sid):
|
105 |
-
sid = torch.LongTensor([int(sid)])
|
106 |
-
return sid
|
107 |
-
|
108 |
-
def __getitem__(self, index):
|
109 |
-
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
110 |
-
|
111 |
-
def __len__(self):
|
112 |
-
return len(self.audiopaths_sid_text)
|
113 |
-
|
114 |
-
|
115 |
-
class TextAudioSpeakerCollate():
|
116 |
-
""" Zero-pads model inputs and targets
|
117 |
-
"""
|
118 |
-
|
119 |
-
def __init__(self, return_ids=False):
|
120 |
-
self.return_ids = return_ids
|
121 |
-
|
122 |
-
def __call__(self, batch):
|
123 |
-
"""Collate's training batch from normalized text, audio and speaker identities
|
124 |
-
PARAMS
|
125 |
-
------
|
126 |
-
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
127 |
-
"""
|
128 |
-
# Right zero-pad all one-hot text sequences to max input length
|
129 |
-
_, ids_sorted_decreasing = torch.sort(
|
130 |
-
torch.LongTensor([x[1].size(1) for x in batch]),
|
131 |
-
dim=0, descending=True)
|
132 |
-
|
133 |
-
max_text_len = max([len(x[0]) for x in batch])
|
134 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
135 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
136 |
-
|
137 |
-
text_lengths = torch.LongTensor(len(batch))
|
138 |
-
spec_lengths = torch.LongTensor(len(batch))
|
139 |
-
wav_lengths = torch.LongTensor(len(batch))
|
140 |
-
sid = torch.LongTensor(len(batch))
|
141 |
-
|
142 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
143 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
144 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
145 |
-
text_padded.zero_()
|
146 |
-
spec_padded.zero_()
|
147 |
-
wav_padded.zero_()
|
148 |
-
for i in range(len(ids_sorted_decreasing)):
|
149 |
-
row = batch[ids_sorted_decreasing[i]]
|
150 |
-
|
151 |
-
text = row[0]
|
152 |
-
text_padded[i, :text.size(0)] = text
|
153 |
-
text_lengths[i] = text.size(0)
|
154 |
-
|
155 |
-
spec = row[1]
|
156 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
157 |
-
spec_lengths[i] = spec.size(1)
|
158 |
-
|
159 |
-
wav = row[2]
|
160 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
161 |
-
wav_lengths[i] = wav.size(1)
|
162 |
-
|
163 |
-
sid[i] = row[3]
|
164 |
-
|
165 |
-
if self.return_ids:
|
166 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
167 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
168 |
-
|
169 |
-
|
170 |
-
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
171 |
-
"""
|
172 |
-
Maintain similar input lengths in a batch.
|
173 |
-
Length groups are specified by boundaries.
|
174 |
-
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
175 |
-
|
176 |
-
It removes samples which are not included in the boundaries.
|
177 |
-
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
178 |
-
"""
|
179 |
-
|
180 |
-
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
181 |
-
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
182 |
-
self.lengths = dataset.lengths
|
183 |
-
self.batch_size = batch_size
|
184 |
-
self.boundaries = boundaries
|
185 |
-
|
186 |
-
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
187 |
-
self.total_size = sum(self.num_samples_per_bucket)
|
188 |
-
self.num_samples = self.total_size // self.num_replicas
|
189 |
-
|
190 |
-
def _create_buckets(self):
|
191 |
-
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
192 |
-
for i in range(len(self.lengths)):
|
193 |
-
length = self.lengths[i]
|
194 |
-
idx_bucket = self._bisect(length)
|
195 |
-
if idx_bucket != -1:
|
196 |
-
buckets[idx_bucket].append(i)
|
197 |
-
|
198 |
-
for i in range(len(buckets) - 1, 0, -1):
|
199 |
-
if len(buckets[i]) == 0:
|
200 |
-
buckets.pop(i)
|
201 |
-
self.boundaries.pop(i + 1)
|
202 |
-
|
203 |
-
num_samples_per_bucket = []
|
204 |
-
for i in range(len(buckets)):
|
205 |
-
len_bucket = len(buckets[i])
|
206 |
-
total_batch_size = self.num_replicas * self.batch_size
|
207 |
-
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
208 |
-
num_samples_per_bucket.append(len_bucket + rem)
|
209 |
-
return buckets, num_samples_per_bucket
|
210 |
-
|
211 |
-
def __iter__(self):
|
212 |
-
# deterministically shuffle based on epoch
|
213 |
-
g = torch.Generator()
|
214 |
-
g.manual_seed(self.epoch)
|
215 |
-
|
216 |
-
indices = []
|
217 |
-
if self.shuffle:
|
218 |
-
for bucket in self.buckets:
|
219 |
-
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
220 |
-
else:
|
221 |
-
for bucket in self.buckets:
|
222 |
-
indices.append(list(range(len(bucket))))
|
223 |
-
|
224 |
-
batches = []
|
225 |
-
for i in range(len(self.buckets)):
|
226 |
-
bucket = self.buckets[i]
|
227 |
-
len_bucket = len(bucket)
|
228 |
-
ids_bucket = indices[i]
|
229 |
-
num_samples_bucket = self.num_samples_per_bucket[i]
|
230 |
-
|
231 |
-
# add extra samples to make it evenly divisible
|
232 |
-
rem = num_samples_bucket - len_bucket
|
233 |
-
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
234 |
-
|
235 |
-
# subsample
|
236 |
-
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
237 |
-
|
238 |
-
# batching
|
239 |
-
for j in range(len(ids_bucket) // self.batch_size):
|
240 |
-
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
241 |
-
batches.append(batch)
|
242 |
-
|
243 |
-
if self.shuffle:
|
244 |
-
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
245 |
-
batches = [batches[i] for i in batch_ids]
|
246 |
-
self.batches = batches
|
247 |
-
|
248 |
-
assert len(self.batches) * self.batch_size == self.num_samples
|
249 |
-
return iter(self.batches)
|
250 |
-
|
251 |
-
def _bisect(self, x, lo=0, hi=None):
|
252 |
-
if hi is None:
|
253 |
-
hi = len(self.boundaries) - 1
|
254 |
-
|
255 |
-
if hi > lo:
|
256 |
-
mid = (hi + lo) // 2
|
257 |
-
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
258 |
-
return mid
|
259 |
-
elif x <= self.boundaries[mid]:
|
260 |
-
return self._bisect(x, lo, mid)
|
261 |
-
else:
|
262 |
-
return self._bisect(x, mid + 1, hi)
|
263 |
-
else:
|
264 |
-
return -1
|
265 |
-
|
266 |
-
def __len__(self):
|
267 |
-
return self.num_samples // self.batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/denoise_audio.py
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torchaudio
|
3 |
-
raw_audio_dir = "./raw_audio/"
|
4 |
-
denoise_audio_dir = "./denoised_audio/"
|
5 |
-
filelist = list(os.walk(raw_audio_dir))[0][2]
|
6 |
-
|
7 |
-
for file in filelist:
|
8 |
-
if file.endswith(".wav"):
|
9 |
-
os.system(f"demucs --two-stems=vocals {raw_audio_dir}{file}")
|
10 |
-
for file in filelist:
|
11 |
-
file = file.replace(".wav", "")
|
12 |
-
wav, sr = torchaudio.load(f"./separated/htdemucs/{file}/vocals.wav", frame_offset=0, num_frames=-1, normalize=True,
|
13 |
-
channels_first=True)
|
14 |
-
# merge two channels into one
|
15 |
-
wav = wav.mean(dim=0).unsqueeze(0)
|
16 |
-
if sr != 22050:
|
17 |
-
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)(wav)
|
18 |
-
torchaudio.save(denoise_audio_dir + file + ".wav", wav, 22050, channels_first=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/download_model.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
from google.colab import files
|
2 |
-
files.download("./G_latest.pth")
|
3 |
-
files.download("./finetune_speaker.json")
|
4 |
-
files.download("./moegoe_config.json")
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/download_video.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import shutil
|
4 |
-
from concurrent.futures import ThreadPoolExecutor
|
5 |
-
from google.colab import files
|
6 |
-
|
7 |
-
basepath = os.getcwd()
|
8 |
-
uploaded = files.upload() # 上传文件
|
9 |
-
for filename in uploaded.keys():
|
10 |
-
assert (filename.endswith(".txt")), "speaker-videolink info could only be .txt file!"
|
11 |
-
shutil.move(os.path.join(basepath, filename), os.path.join("./speaker_links.txt"))
|
12 |
-
|
13 |
-
|
14 |
-
def generate_infos():
|
15 |
-
infos = []
|
16 |
-
with open("./speaker_links.txt", 'r', encoding='utf-8') as f:
|
17 |
-
lines = f.readlines()
|
18 |
-
for line in lines:
|
19 |
-
line = line.replace("\n", "").replace(" ", "")
|
20 |
-
if line == "":
|
21 |
-
continue
|
22 |
-
speaker, link = line.split("|")
|
23 |
-
filename = speaker + "_" + str(random.randint(0, 1000000))
|
24 |
-
infos.append({"link": link, "filename": filename})
|
25 |
-
return infos
|
26 |
-
|
27 |
-
|
28 |
-
def download_video(info):
|
29 |
-
link = info["link"]
|
30 |
-
filename = info["filename"]
|
31 |
-
os.system(f"youtube-dl -f 0 {link} -o ./video_data/{filename}.mp4")
|
32 |
-
|
33 |
-
|
34 |
-
if __name__ == "__main__":
|
35 |
-
infos = generate_infos()
|
36 |
-
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
37 |
-
executor.map(download_video, infos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/finetune_speaker_v2.py
DELETED
@@ -1,321 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import argparse
|
4 |
-
import itertools
|
5 |
-
import math
|
6 |
-
import torch
|
7 |
-
from torch import nn, optim
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
from torch.utils.tensorboard import SummaryWriter
|
11 |
-
import torch.multiprocessing as mp
|
12 |
-
import torch.distributed as dist
|
13 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
-
from torch.cuda.amp import autocast, GradScaler
|
15 |
-
from tqdm import tqdm
|
16 |
-
|
17 |
-
import librosa
|
18 |
-
import logging
|
19 |
-
|
20 |
-
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
-
|
22 |
-
import commons
|
23 |
-
import utils
|
24 |
-
from data_utils import (
|
25 |
-
TextAudioSpeakerLoader,
|
26 |
-
TextAudioSpeakerCollate,
|
27 |
-
DistributedBucketSampler
|
28 |
-
)
|
29 |
-
from models import (
|
30 |
-
SynthesizerTrn,
|
31 |
-
MultiPeriodDiscriminator,
|
32 |
-
)
|
33 |
-
from losses import (
|
34 |
-
generator_loss,
|
35 |
-
discriminator_loss,
|
36 |
-
feature_loss,
|
37 |
-
kl_loss
|
38 |
-
)
|
39 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
40 |
-
|
41 |
-
|
42 |
-
torch.backends.cudnn.benchmark = True
|
43 |
-
global_step = 0
|
44 |
-
|
45 |
-
|
46 |
-
def main():
|
47 |
-
"""Assume Single Node Multi GPUs Training Only"""
|
48 |
-
assert torch.cuda.is_available(), "CPU training is not allowed."
|
49 |
-
|
50 |
-
n_gpus = torch.cuda.device_count()
|
51 |
-
os.environ['MASTER_ADDR'] = 'localhost'
|
52 |
-
os.environ['MASTER_PORT'] = '8000'
|
53 |
-
|
54 |
-
hps = utils.get_hparams()
|
55 |
-
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
56 |
-
|
57 |
-
|
58 |
-
def run(rank, n_gpus, hps):
|
59 |
-
global global_step
|
60 |
-
symbols = hps['symbols']
|
61 |
-
if rank == 0:
|
62 |
-
logger = utils.get_logger(hps.model_dir)
|
63 |
-
logger.info(hps)
|
64 |
-
utils.check_git_hash(hps.model_dir)
|
65 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
66 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
67 |
-
|
68 |
-
# Use gloo backend on Windows for Pytorch
|
69 |
-
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
70 |
-
torch.manual_seed(hps.train.seed)
|
71 |
-
torch.cuda.set_device(rank)
|
72 |
-
|
73 |
-
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, symbols)
|
74 |
-
train_sampler = DistributedBucketSampler(
|
75 |
-
train_dataset,
|
76 |
-
hps.train.batch_size,
|
77 |
-
[32,300,400,500,600,700,800,900,1000],
|
78 |
-
num_replicas=n_gpus,
|
79 |
-
rank=rank,
|
80 |
-
shuffle=True)
|
81 |
-
collate_fn = TextAudioSpeakerCollate()
|
82 |
-
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
|
83 |
-
collate_fn=collate_fn, batch_sampler=train_sampler)
|
84 |
-
# train_loader = DataLoader(train_dataset, batch_size=hps.train.batch_size, num_workers=2, shuffle=False, pin_memory=True,
|
85 |
-
# collate_fn=collate_fn)
|
86 |
-
if rank == 0:
|
87 |
-
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, symbols)
|
88 |
-
eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
89 |
-
batch_size=hps.train.batch_size, pin_memory=True,
|
90 |
-
drop_last=False, collate_fn=collate_fn)
|
91 |
-
|
92 |
-
net_g = SynthesizerTrn(
|
93 |
-
len(symbols),
|
94 |
-
hps.data.filter_length // 2 + 1,
|
95 |
-
hps.train.segment_size // hps.data.hop_length,
|
96 |
-
n_speakers=hps.data.n_speakers,
|
97 |
-
**hps.model).cuda(rank)
|
98 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
99 |
-
|
100 |
-
# load existing model
|
101 |
-
_, _, _, _ = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None, drop_speaker_emb=hps.drop_speaker_embed)
|
102 |
-
_, _, _, _ = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
|
103 |
-
epoch_str = 1
|
104 |
-
global_step = 0
|
105 |
-
# freeze all other layers except speaker embedding
|
106 |
-
for p in net_g.parameters():
|
107 |
-
p.requires_grad = True
|
108 |
-
for p in net_d.parameters():
|
109 |
-
p.requires_grad = True
|
110 |
-
# for p in net_d.parameters():
|
111 |
-
# p.requires_grad = False
|
112 |
-
# net_g.emb_g.weight.requires_grad = True
|
113 |
-
optim_g = torch.optim.AdamW(
|
114 |
-
net_g.parameters(),
|
115 |
-
hps.train.learning_rate,
|
116 |
-
betas=hps.train.betas,
|
117 |
-
eps=hps.train.eps)
|
118 |
-
optim_d = torch.optim.AdamW(
|
119 |
-
net_d.parameters(),
|
120 |
-
hps.train.learning_rate,
|
121 |
-
betas=hps.train.betas,
|
122 |
-
eps=hps.train.eps)
|
123 |
-
# optim_d = None
|
124 |
-
net_g = DDP(net_g, device_ids=[rank])
|
125 |
-
net_d = DDP(net_d, device_ids=[rank])
|
126 |
-
|
127 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay)
|
128 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay)
|
129 |
-
|
130 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
131 |
-
|
132 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
133 |
-
if rank==0:
|
134 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
135 |
-
else:
|
136 |
-
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
137 |
-
scheduler_g.step()
|
138 |
-
scheduler_d.step()
|
139 |
-
|
140 |
-
|
141 |
-
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
142 |
-
net_g, net_d = nets
|
143 |
-
optim_g, optim_d = optims
|
144 |
-
scheduler_g, scheduler_d = schedulers
|
145 |
-
train_loader, eval_loader = loaders
|
146 |
-
if writers is not None:
|
147 |
-
writer, writer_eval = writers
|
148 |
-
|
149 |
-
# train_loader.batch_sampler.set_epoch(epoch)
|
150 |
-
global global_step
|
151 |
-
|
152 |
-
net_g.train()
|
153 |
-
net_d.train()
|
154 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader)):
|
155 |
-
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
156 |
-
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
157 |
-
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
158 |
-
speakers = speakers.cuda(rank, non_blocking=True)
|
159 |
-
|
160 |
-
with autocast(enabled=hps.train.fp16_run):
|
161 |
-
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
|
162 |
-
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
163 |
-
|
164 |
-
mel = spec_to_mel_torch(
|
165 |
-
spec,
|
166 |
-
hps.data.filter_length,
|
167 |
-
hps.data.n_mel_channels,
|
168 |
-
hps.data.sampling_rate,
|
169 |
-
hps.data.mel_fmin,
|
170 |
-
hps.data.mel_fmax)
|
171 |
-
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
172 |
-
y_hat_mel = mel_spectrogram_torch(
|
173 |
-
y_hat.squeeze(1),
|
174 |
-
hps.data.filter_length,
|
175 |
-
hps.data.n_mel_channels,
|
176 |
-
hps.data.sampling_rate,
|
177 |
-
hps.data.hop_length,
|
178 |
-
hps.data.win_length,
|
179 |
-
hps.data.mel_fmin,
|
180 |
-
hps.data.mel_fmax
|
181 |
-
)
|
182 |
-
|
183 |
-
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
184 |
-
|
185 |
-
# Discriminator
|
186 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
187 |
-
with autocast(enabled=False):
|
188 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
189 |
-
loss_disc_all = loss_disc
|
190 |
-
optim_d.zero_grad()
|
191 |
-
scaler.scale(loss_disc_all).backward()
|
192 |
-
scaler.unscale_(optim_d)
|
193 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
194 |
-
scaler.step(optim_d)
|
195 |
-
|
196 |
-
with autocast(enabled=hps.train.fp16_run):
|
197 |
-
# Generator
|
198 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
199 |
-
with autocast(enabled=False):
|
200 |
-
loss_dur = torch.sum(l_length.float())
|
201 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
202 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
203 |
-
|
204 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
205 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
206 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
207 |
-
optim_g.zero_grad()
|
208 |
-
scaler.scale(loss_gen_all).backward()
|
209 |
-
scaler.unscale_(optim_g)
|
210 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
211 |
-
scaler.step(optim_g)
|
212 |
-
scaler.update()
|
213 |
-
|
214 |
-
if rank==0:
|
215 |
-
if global_step % hps.train.log_interval == 0:
|
216 |
-
lr = optim_g.param_groups[0]['lr']
|
217 |
-
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
218 |
-
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
219 |
-
epoch,
|
220 |
-
100. * batch_idx / len(train_loader)))
|
221 |
-
logger.info([x.item() for x in losses] + [global_step, lr])
|
222 |
-
|
223 |
-
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
224 |
-
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
225 |
-
|
226 |
-
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
227 |
-
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
228 |
-
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
229 |
-
image_dict = {
|
230 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
231 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
232 |
-
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
233 |
-
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
234 |
-
}
|
235 |
-
utils.summarize(
|
236 |
-
writer=writer,
|
237 |
-
global_step=global_step,
|
238 |
-
images=image_dict,
|
239 |
-
scalars=scalar_dict)
|
240 |
-
|
241 |
-
if global_step % hps.train.eval_interval == 0:
|
242 |
-
evaluate(hps, net_g, eval_loader, writer_eval)
|
243 |
-
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
244 |
-
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
|
245 |
-
os.path.join(hps.model_dir, "G_latest.pth".format(global_step)))
|
246 |
-
# utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
247 |
-
old_g=os.path.join(hps.model_dir, "G_{}.pth".format(global_step-4000))
|
248 |
-
# old_d=os.path.join(hps.model_dir, "D_{}.pth".format(global_step-400))
|
249 |
-
if os.path.exists(old_g):
|
250 |
-
os.remove(old_g)
|
251 |
-
# if os.path.exists(old_d):
|
252 |
-
# os.remove(old_d)
|
253 |
-
global_step += 1
|
254 |
-
if epoch > hps.max_epochs:
|
255 |
-
print("Maximum epoch reached, closing training...")
|
256 |
-
exit()
|
257 |
-
|
258 |
-
if rank == 0:
|
259 |
-
logger.info('====> Epoch: {}'.format(epoch))
|
260 |
-
|
261 |
-
|
262 |
-
def evaluate(hps, generator, eval_loader, writer_eval):
|
263 |
-
generator.eval()
|
264 |
-
with torch.no_grad():
|
265 |
-
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
|
266 |
-
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
267 |
-
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
268 |
-
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
269 |
-
speakers = speakers.cuda(0)
|
270 |
-
|
271 |
-
# remove else
|
272 |
-
x = x[:1]
|
273 |
-
x_lengths = x_lengths[:1]
|
274 |
-
spec = spec[:1]
|
275 |
-
spec_lengths = spec_lengths[:1]
|
276 |
-
y = y[:1]
|
277 |
-
y_lengths = y_lengths[:1]
|
278 |
-
speakers = speakers[:1]
|
279 |
-
break
|
280 |
-
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
|
281 |
-
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
282 |
-
|
283 |
-
mel = spec_to_mel_torch(
|
284 |
-
spec,
|
285 |
-
hps.data.filter_length,
|
286 |
-
hps.data.n_mel_channels,
|
287 |
-
hps.data.sampling_rate,
|
288 |
-
hps.data.mel_fmin,
|
289 |
-
hps.data.mel_fmax)
|
290 |
-
y_hat_mel = mel_spectrogram_torch(
|
291 |
-
y_hat.squeeze(1).float(),
|
292 |
-
hps.data.filter_length,
|
293 |
-
hps.data.n_mel_channels,
|
294 |
-
hps.data.sampling_rate,
|
295 |
-
hps.data.hop_length,
|
296 |
-
hps.data.win_length,
|
297 |
-
hps.data.mel_fmin,
|
298 |
-
hps.data.mel_fmax
|
299 |
-
)
|
300 |
-
image_dict = {
|
301 |
-
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
302 |
-
}
|
303 |
-
audio_dict = {
|
304 |
-
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
305 |
-
}
|
306 |
-
if global_step == 0:
|
307 |
-
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
308 |
-
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
309 |
-
|
310 |
-
utils.summarize(
|
311 |
-
writer=writer_eval,
|
312 |
-
global_step=global_step,
|
313 |
-
images=image_dict,
|
314 |
-
audios=audio_dict,
|
315 |
-
audio_sampling_rate=hps.data.sampling_rate
|
316 |
-
)
|
317 |
-
generator.train()
|
318 |
-
|
319 |
-
|
320 |
-
if __name__ == "__main__":
|
321 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/inference/G_latest.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:44f9141fcac34c950376594d08a288d9159a32d6add851155b6fd0ecee242419
|
3 |
-
size 158887401
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/inference/ONNXVITS_inference.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
-
import IPython.display as ipd
|
4 |
-
import torch
|
5 |
-
import commons
|
6 |
-
import utils
|
7 |
-
import ONNXVITS_infer
|
8 |
-
from text import text_to_sequence
|
9 |
-
|
10 |
-
def get_text(text, hps):
|
11 |
-
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
12 |
-
if hps.data.add_blank:
|
13 |
-
text_norm = commons.intersperse(text_norm, 0)
|
14 |
-
text_norm = torch.LongTensor(text_norm)
|
15 |
-
return text_norm
|
16 |
-
|
17 |
-
hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json")
|
18 |
-
|
19 |
-
net_g = ONNXVITS_infer.SynthesizerTrn(
|
20 |
-
len(hps.symbols),
|
21 |
-
hps.data.filter_length // 2 + 1,
|
22 |
-
hps.train.segment_size // hps.data.hop_length,
|
23 |
-
n_speakers=hps.data.n_speakers,
|
24 |
-
**hps.model)
|
25 |
-
_ = net_g.eval()
|
26 |
-
|
27 |
-
_ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g)
|
28 |
-
|
29 |
-
text1 = get_text("おはようございます。", hps)
|
30 |
-
stn_tst = text1
|
31 |
-
with torch.no_grad():
|
32 |
-
x_tst = stn_tst.unsqueeze(0)
|
33 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
34 |
-
sid = torch.LongTensor([0])
|
35 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
|
36 |
-
print(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/inference/VC_inference.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import no_grad, LongTensor
|
5 |
-
import argparse
|
6 |
-
import commons
|
7 |
-
from mel_processing import spectrogram_torch
|
8 |
-
import utils
|
9 |
-
from models import SynthesizerTrn
|
10 |
-
import gradio as gr
|
11 |
-
import librosa
|
12 |
-
import webbrowser
|
13 |
-
|
14 |
-
from text import text_to_sequence, _clean_text
|
15 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
-
language_marks = {
|
17 |
-
"Japanese": "",
|
18 |
-
"日本語": "[JA]",
|
19 |
-
"简体中文": "[ZH]",
|
20 |
-
"English": "[EN]",
|
21 |
-
"Mix": "",
|
22 |
-
}
|
23 |
-
lang = ['日本語', '简体中文', 'English', 'Mix']
|
24 |
-
def get_text(text, hps, is_symbol):
|
25 |
-
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
26 |
-
if hps.data.add_blank:
|
27 |
-
text_norm = commons.intersperse(text_norm, 0)
|
28 |
-
text_norm = LongTensor(text_norm)
|
29 |
-
return text_norm
|
30 |
-
|
31 |
-
def create_tts_fn(model, hps, speaker_ids):
|
32 |
-
def tts_fn(text, speaker, language, speed):
|
33 |
-
if language is not None:
|
34 |
-
text = language_marks[language] + text + language_marks[language]
|
35 |
-
speaker_id = speaker_ids[speaker]
|
36 |
-
stn_tst = get_text(text, hps, False)
|
37 |
-
with no_grad():
|
38 |
-
x_tst = stn_tst.unsqueeze(0).to(device)
|
39 |
-
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
40 |
-
sid = LongTensor([speaker_id]).to(device)
|
41 |
-
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
42 |
-
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
43 |
-
del stn_tst, x_tst, x_tst_lengths, sid
|
44 |
-
return "Success", (hps.data.sampling_rate, audio)
|
45 |
-
|
46 |
-
return tts_fn
|
47 |
-
|
48 |
-
def create_vc_fn(model, hps, speaker_ids):
|
49 |
-
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
|
50 |
-
input_audio = record_audio if record_audio is not None else upload_audio
|
51 |
-
if input_audio is None:
|
52 |
-
return "You need to record or upload an audio", None
|
53 |
-
sampling_rate, audio = input_audio
|
54 |
-
original_speaker_id = speaker_ids[original_speaker]
|
55 |
-
target_speaker_id = speaker_ids[target_speaker]
|
56 |
-
|
57 |
-
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
58 |
-
if len(audio.shape) > 1:
|
59 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
60 |
-
if sampling_rate != hps.data.sampling_rate:
|
61 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
62 |
-
with no_grad():
|
63 |
-
y = torch.FloatTensor(audio)
|
64 |
-
y = y / max(-y.min(), y.max()) / 0.99
|
65 |
-
y = y.to(device)
|
66 |
-
y = y.unsqueeze(0)
|
67 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
68 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
69 |
-
center=False).to(device)
|
70 |
-
spec_lengths = LongTensor([spec.size(-1)]).to(device)
|
71 |
-
sid_src = LongTensor([original_speaker_id]).to(device)
|
72 |
-
sid_tgt = LongTensor([target_speaker_id]).to(device)
|
73 |
-
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
74 |
-
0, 0].data.cpu().float().numpy()
|
75 |
-
del y, spec, spec_lengths, sid_src, sid_tgt
|
76 |
-
return "Success", (hps.data.sampling_rate, audio)
|
77 |
-
|
78 |
-
return vc_fn
|
79 |
-
if __name__ == "__main__":
|
80 |
-
parser = argparse.ArgumentParser()
|
81 |
-
parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
|
82 |
-
parser.add_argument("--config_dir", default="./finetune_speaker.json", help="directory to your model config file")
|
83 |
-
parser.add_argument("--share", default=False, help="make link public (used in colab)")
|
84 |
-
|
85 |
-
args = parser.parse_args()
|
86 |
-
hps = utils.get_hparams_from_file(args.config_dir)
|
87 |
-
|
88 |
-
|
89 |
-
net_g = SynthesizerTrn(
|
90 |
-
len(hps.symbols),
|
91 |
-
hps.data.filter_length // 2 + 1,
|
92 |
-
hps.train.segment_size // hps.data.hop_length,
|
93 |
-
n_speakers=hps.data.n_speakers,
|
94 |
-
**hps.model).to(device)
|
95 |
-
_ = net_g.eval()
|
96 |
-
|
97 |
-
_ = utils.load_checkpoint(args.model_dir, net_g, None)
|
98 |
-
speaker_ids = hps.speakers
|
99 |
-
speakers = list(hps.speakers.keys())
|
100 |
-
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
|
101 |
-
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
|
102 |
-
app = gr.Blocks()
|
103 |
-
with app:
|
104 |
-
with gr.Tab("Text-to-Speech"):
|
105 |
-
with gr.Row():
|
106 |
-
with gr.Column():
|
107 |
-
textbox = gr.TextArea(label="Text",
|
108 |
-
placeholder="Type your sentence here",
|
109 |
-
value="こんにちわ。", elem_id=f"tts-input")
|
110 |
-
# select character
|
111 |
-
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
|
112 |
-
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
|
113 |
-
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
|
114 |
-
label='速度 Speed')
|
115 |
-
with gr.Column():
|
116 |
-
text_output = gr.Textbox(label="Message")
|
117 |
-
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
118 |
-
btn = gr.Button("Generate!")
|
119 |
-
btn.click(tts_fn,
|
120 |
-
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
|
121 |
-
outputs=[text_output, audio_output])
|
122 |
-
with gr.Tab("Voice Conversion"):
|
123 |
-
gr.Markdown("""
|
124 |
-
录制或上传声音,并选择要转换的音色。
|
125 |
-
""")
|
126 |
-
with gr.Column():
|
127 |
-
record_audio = gr.Audio(label="record your voice", source="microphone")
|
128 |
-
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
129 |
-
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
|
130 |
-
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
|
131 |
-
with gr.Column():
|
132 |
-
message_box = gr.Textbox(label="Message")
|
133 |
-
converted_audio = gr.Audio(label='converted audio')
|
134 |
-
btn = gr.Button("Convert!")
|
135 |
-
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
136 |
-
outputs=[message_box, converted_audio])
|
137 |
-
webbrowser.open("http://127.0.0.1:7860")
|
138 |
-
app.launch(share=args.share)
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/inference/finetune_speaker.json
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 100,
|
4 |
-
"eval_interval": 1000,
|
5 |
-
"seed": 1234,
|
6 |
-
"epochs": 10000,
|
7 |
-
"learning_rate": 0.0002,
|
8 |
-
"betas": [
|
9 |
-
0.8,
|
10 |
-
0.99
|
11 |
-
],
|
12 |
-
"eps": 1e-09,
|
13 |
-
"batch_size": 16,
|
14 |
-
"fp16_run": true,
|
15 |
-
"lr_decay": 0.999875,
|
16 |
-
"segment_size": 8192,
|
17 |
-
"init_lr_ratio": 1,
|
18 |
-
"warmup_epochs": 0,
|
19 |
-
"c_mel": 45,
|
20 |
-
"c_kl": 1.0
|
21 |
-
},
|
22 |
-
"data": {
|
23 |
-
"training_files": "final_annotation_train.txt",
|
24 |
-
"validation_files": "final_annotation_val.txt",
|
25 |
-
"text_cleaners": [
|
26 |
-
"zh_ja_mixture_cleaners"
|
27 |
-
],
|
28 |
-
"max_wav_value": 32768.0,
|
29 |
-
"sampling_rate": 22050,
|
30 |
-
"filter_length": 1024,
|
31 |
-
"hop_length": 256,
|
32 |
-
"win_length": 1024,
|
33 |
-
"n_mel_channels": 80,
|
34 |
-
"mel_fmin": 0.0,
|
35 |
-
"mel_fmax": null,
|
36 |
-
"add_blank": true,
|
37 |
-
"n_speakers": 3,
|
38 |
-
"cleaned_text": true
|
39 |
-
},
|
40 |
-
"model": {
|
41 |
-
"inter_channels": 192,
|
42 |
-
"hidden_channels": 192,
|
43 |
-
"filter_channels": 768,
|
44 |
-
"n_heads": 2,
|
45 |
-
"n_layers": 6,
|
46 |
-
"kernel_size": 3,
|
47 |
-
"p_dropout": 0.1,
|
48 |
-
"resblock": "1",
|
49 |
-
"resblock_kernel_sizes": [
|
50 |
-
3,
|
51 |
-
7,
|
52 |
-
11
|
53 |
-
],
|
54 |
-
"resblock_dilation_sizes": [
|
55 |
-
[
|
56 |
-
1,
|
57 |
-
3,
|
58 |
-
5
|
59 |
-
],
|
60 |
-
[
|
61 |
-
1,
|
62 |
-
3,
|
63 |
-
5
|
64 |
-
],
|
65 |
-
[
|
66 |
-
1,
|
67 |
-
3,
|
68 |
-
5
|
69 |
-
]
|
70 |
-
],
|
71 |
-
"upsample_rates": [
|
72 |
-
8,
|
73 |
-
8,
|
74 |
-
2,
|
75 |
-
2
|
76 |
-
],
|
77 |
-
"upsample_initial_channel": 512,
|
78 |
-
"upsample_kernel_sizes": [
|
79 |
-
16,
|
80 |
-
16,
|
81 |
-
4,
|
82 |
-
4
|
83 |
-
],
|
84 |
-
"n_layers_q": 3,
|
85 |
-
"use_spectral_norm": false,
|
86 |
-
"gin_channels": 256
|
87 |
-
},
|
88 |
-
"speakers": {
|
89 |
-
"Hana": 0,
|
90 |
-
"specialweek": 1,
|
91 |
-
"zhongli": 2
|
92 |
-
},
|
93 |
-
"symbols": [
|
94 |
-
"_",
|
95 |
-
",",
|
96 |
-
".",
|
97 |
-
"!",
|
98 |
-
"?",
|
99 |
-
"-",
|
100 |
-
"~",
|
101 |
-
"\u2026",
|
102 |
-
"A",
|
103 |
-
"E",
|
104 |
-
"I",
|
105 |
-
"N",
|
106 |
-
"O",
|
107 |
-
"Q",
|
108 |
-
"U",
|
109 |
-
"a",
|
110 |
-
"b",
|
111 |
-
"d",
|
112 |
-
"e",
|
113 |
-
"f",
|
114 |
-
"g",
|
115 |
-
"h",
|
116 |
-
"i",
|
117 |
-
"j",
|
118 |
-
"k",
|
119 |
-
"l",
|
120 |
-
"m",
|
121 |
-
"n",
|
122 |
-
"o",
|
123 |
-
"p",
|
124 |
-
"r",
|
125 |
-
"s",
|
126 |
-
"t",
|
127 |
-
"u",
|
128 |
-
"v",
|
129 |
-
"w",
|
130 |
-
"y",
|
131 |
-
"z",
|
132 |
-
"\u0283",
|
133 |
-
"\u02a7",
|
134 |
-
"\u02a6",
|
135 |
-
"\u026f",
|
136 |
-
"\u0279",
|
137 |
-
"\u0259",
|
138 |
-
"\u0265",
|
139 |
-
"\u207c",
|
140 |
-
"\u02b0",
|
141 |
-
"`",
|
142 |
-
"\u2192",
|
143 |
-
"\u2193",
|
144 |
-
"\u2191",
|
145 |
-
" "
|
146 |
-
]
|
147 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/long_audio_transcribe.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
from moviepy.editor import AudioFileClip
|
2 |
-
import whisper
|
3 |
-
import os
|
4 |
-
import torchaudio
|
5 |
-
import librosa
|
6 |
-
import torch
|
7 |
-
import argparse
|
8 |
-
parent_dir = "./denoised_audio/"
|
9 |
-
filelist = list(os.walk(parent_dir))[0][2]
|
10 |
-
if __name__ == "__main__":
|
11 |
-
parser = argparse.ArgumentParser()
|
12 |
-
parser.add_argument("--languages", default="CJE")
|
13 |
-
parser.add_argument("--whisper_size", default="medium")
|
14 |
-
args = parser.parse_args()
|
15 |
-
if args.languages == "CJE":
|
16 |
-
lang2token = {
|
17 |
-
'zh': "[ZH]",
|
18 |
-
'ja': "[JA]",
|
19 |
-
"en": "[EN]",
|
20 |
-
}
|
21 |
-
elif args.languages == "CJ":
|
22 |
-
lang2token = {
|
23 |
-
'zh': "[ZH]",
|
24 |
-
'ja': "[JA]",
|
25 |
-
}
|
26 |
-
elif args.languages == "C":
|
27 |
-
lang2token = {
|
28 |
-
'zh': "[ZH]",
|
29 |
-
}
|
30 |
-
assert(torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
31 |
-
model = whisper.load_model(args.whisper_size)
|
32 |
-
speaker_annos = []
|
33 |
-
for file in filelist:
|
34 |
-
print(f"transcribing {parent_dir + file}...\n")
|
35 |
-
options = dict(beam_size=5, best_of=5)
|
36 |
-
transcribe_options = dict(task="transcribe", **options)
|
37 |
-
result = model.transcribe(parent_dir + file, **transcribe_options)
|
38 |
-
segments = result["segments"]
|
39 |
-
# result = model.transcribe(parent_dir + file)
|
40 |
-
lang = result['language']
|
41 |
-
if result['language'] not in list(lang2token.keys()):
|
42 |
-
print(f"{lang} not supported, ignoring...\n")
|
43 |
-
continue
|
44 |
-
# segment audio based on segment results
|
45 |
-
character_name = file.rstrip(".wav").split("_")[0]
|
46 |
-
code = file.rstrip(".wav").split("_")[1]
|
47 |
-
if not os.path.exists("./segmented_character_voice/" + character_name):
|
48 |
-
os.mkdir("./segmented_character_voice/" + character_name)
|
49 |
-
wav, sr = torchaudio.load(parent_dir + file, frame_offset=0, num_frames=-1, normalize=True,
|
50 |
-
channels_first=True)
|
51 |
-
|
52 |
-
for i, seg in enumerate(result['segments']):
|
53 |
-
start_time = seg['start']
|
54 |
-
end_time = seg['end']
|
55 |
-
text = seg['text']
|
56 |
-
text = lang2token[lang] + text.replace("\n", "") + lang2token[lang]
|
57 |
-
text = text + "\n"
|
58 |
-
wav_seg = wav[:, int(start_time*sr):int(end_time*sr)]
|
59 |
-
wav_seg_name = f"{character_name}_{code}_{i}.wav"
|
60 |
-
savepth = "./segmented_character_voice/" + character_name + "/" + wav_seg_name
|
61 |
-
speaker_annos.append(savepth + "|" + character_name + "|" + text)
|
62 |
-
print(f"Transcribed segment: {speaker_annos[-1]}")
|
63 |
-
# trimmed_wav_seg = librosa.effects.trim(wav_seg.squeeze().numpy())
|
64 |
-
# trimmed_wav_seg = torch.tensor(trimmed_wav_seg[0]).unsqueeze(0)
|
65 |
-
torchaudio.save(savepth, wav_seg, 22050, channels_first=True)
|
66 |
-
if len(speaker_annos) == 0:
|
67 |
-
print("Warning: no long audios & videos found, this IS expected if you have only uploaded short audios")
|
68 |
-
print("this IS NOT expected if you have uploaded any long audios, videos or video links. Please check your file structure or make sure your audio/video language is supported.")
|
69 |
-
with open("long_character_anno.txt", 'w', encoding='utf-8') as f:
|
70 |
-
for line in speaker_annos:
|
71 |
-
f.write(line)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/losses.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
import commons
|
5 |
-
|
6 |
-
|
7 |
-
def feature_loss(fmap_r, fmap_g):
|
8 |
-
loss = 0
|
9 |
-
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
-
for rl, gl in zip(dr, dg):
|
11 |
-
rl = rl.float().detach()
|
12 |
-
gl = gl.float()
|
13 |
-
loss += torch.mean(torch.abs(rl - gl))
|
14 |
-
|
15 |
-
return loss * 2
|
16 |
-
|
17 |
-
|
18 |
-
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
-
loss = 0
|
20 |
-
r_losses = []
|
21 |
-
g_losses = []
|
22 |
-
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
-
dr = dr.float()
|
24 |
-
dg = dg.float()
|
25 |
-
r_loss = torch.mean((1-dr)**2)
|
26 |
-
g_loss = torch.mean(dg**2)
|
27 |
-
loss += (r_loss + g_loss)
|
28 |
-
r_losses.append(r_loss.item())
|
29 |
-
g_losses.append(g_loss.item())
|
30 |
-
|
31 |
-
return loss, r_losses, g_losses
|
32 |
-
|
33 |
-
|
34 |
-
def generator_loss(disc_outputs):
|
35 |
-
loss = 0
|
36 |
-
gen_losses = []
|
37 |
-
for dg in disc_outputs:
|
38 |
-
dg = dg.float()
|
39 |
-
l = torch.mean((1-dg)**2)
|
40 |
-
gen_losses.append(l)
|
41 |
-
loss += l
|
42 |
-
|
43 |
-
return loss, gen_losses
|
44 |
-
|
45 |
-
|
46 |
-
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
-
"""
|
48 |
-
z_p, logs_q: [b, h, t_t]
|
49 |
-
m_p, logs_p: [b, h, t_t]
|
50 |
-
"""
|
51 |
-
z_p = z_p.float()
|
52 |
-
logs_q = logs_q.float()
|
53 |
-
m_p = m_p.float()
|
54 |
-
logs_p = logs_p.float()
|
55 |
-
z_mask = z_mask.float()
|
56 |
-
|
57 |
-
kl = logs_p - logs_q - 0.5
|
58 |
-
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
-
kl = torch.sum(kl * z_mask)
|
60 |
-
l = kl / torch.sum(z_mask)
|
61 |
-
return l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/mel_processing.py
DELETED
@@ -1,112 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import torch.utils.data
|
8 |
-
import numpy as np
|
9 |
-
import librosa
|
10 |
-
import librosa.util as librosa_util
|
11 |
-
from librosa.util import normalize, pad_center, tiny
|
12 |
-
from scipy.signal import get_window
|
13 |
-
from scipy.io.wavfile import read
|
14 |
-
from librosa.filters import mel as librosa_mel_fn
|
15 |
-
|
16 |
-
MAX_WAV_VALUE = 32768.0
|
17 |
-
|
18 |
-
|
19 |
-
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
-
"""
|
21 |
-
PARAMS
|
22 |
-
------
|
23 |
-
C: compression factor
|
24 |
-
"""
|
25 |
-
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
-
|
27 |
-
|
28 |
-
def dynamic_range_decompression_torch(x, C=1):
|
29 |
-
"""
|
30 |
-
PARAMS
|
31 |
-
------
|
32 |
-
C: compression factor used to compress
|
33 |
-
"""
|
34 |
-
return torch.exp(x) / C
|
35 |
-
|
36 |
-
|
37 |
-
def spectral_normalize_torch(magnitudes):
|
38 |
-
output = dynamic_range_compression_torch(magnitudes)
|
39 |
-
return output
|
40 |
-
|
41 |
-
|
42 |
-
def spectral_de_normalize_torch(magnitudes):
|
43 |
-
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
-
return output
|
45 |
-
|
46 |
-
|
47 |
-
mel_basis = {}
|
48 |
-
hann_window = {}
|
49 |
-
|
50 |
-
|
51 |
-
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
-
if torch.min(y) < -1.:
|
53 |
-
print('min value is ', torch.min(y))
|
54 |
-
if torch.max(y) > 1.:
|
55 |
-
print('max value is ', torch.max(y))
|
56 |
-
|
57 |
-
global hann_window
|
58 |
-
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
-
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
-
if wnsize_dtype_device not in hann_window:
|
61 |
-
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
-
|
63 |
-
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
-
y = y.squeeze(1)
|
65 |
-
|
66 |
-
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
-
|
69 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
-
return spec
|
71 |
-
|
72 |
-
|
73 |
-
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
-
global mel_basis
|
75 |
-
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
-
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
-
if fmax_dtype_device not in mel_basis:
|
78 |
-
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
-
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
-
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
-
spec = spectral_normalize_torch(spec)
|
82 |
-
return spec
|
83 |
-
|
84 |
-
|
85 |
-
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
-
if torch.min(y) < -1.:
|
87 |
-
print('min value is ', torch.min(y))
|
88 |
-
if torch.max(y) > 1.:
|
89 |
-
print('max value is ', torch.max(y))
|
90 |
-
|
91 |
-
global mel_basis, hann_window
|
92 |
-
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
-
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
-
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
-
if fmax_dtype_device not in mel_basis:
|
96 |
-
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
-
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
-
if wnsize_dtype_device not in hann_window:
|
99 |
-
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
-
|
101 |
-
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
-
y = y.squeeze(1)
|
103 |
-
|
104 |
-
spec = torch.stft(y.float(), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
-
|
107 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
-
|
109 |
-
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
-
spec = spectral_normalize_torch(spec)
|
111 |
-
|
112 |
-
return spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/models.py
DELETED
@@ -1,533 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
import commons
|
8 |
-
import modules
|
9 |
-
import attentions
|
10 |
-
import monotonic_align
|
11 |
-
|
12 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
-
from commons import init_weights, get_padding
|
15 |
-
|
16 |
-
|
17 |
-
class StochasticDurationPredictor(nn.Module):
|
18 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
-
super().__init__()
|
20 |
-
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
-
self.in_channels = in_channels
|
22 |
-
self.filter_channels = filter_channels
|
23 |
-
self.kernel_size = kernel_size
|
24 |
-
self.p_dropout = p_dropout
|
25 |
-
self.n_flows = n_flows
|
26 |
-
self.gin_channels = gin_channels
|
27 |
-
|
28 |
-
self.log_flow = modules.Log()
|
29 |
-
self.flows = nn.ModuleList()
|
30 |
-
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
-
for i in range(n_flows):
|
32 |
-
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
-
self.flows.append(modules.Flip())
|
34 |
-
|
35 |
-
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
-
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
-
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
-
self.post_flows = nn.ModuleList()
|
39 |
-
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
-
for i in range(4):
|
41 |
-
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
-
self.post_flows.append(modules.Flip())
|
43 |
-
|
44 |
-
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
-
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
-
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
-
if gin_channels != 0:
|
48 |
-
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
-
|
50 |
-
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
-
x = torch.detach(x)
|
52 |
-
x = self.pre(x)
|
53 |
-
if g is not None:
|
54 |
-
g = torch.detach(g)
|
55 |
-
x = x + self.cond(g)
|
56 |
-
x = self.convs(x, x_mask)
|
57 |
-
x = self.proj(x) * x_mask
|
58 |
-
|
59 |
-
if not reverse:
|
60 |
-
flows = self.flows
|
61 |
-
assert w is not None
|
62 |
-
|
63 |
-
logdet_tot_q = 0
|
64 |
-
h_w = self.post_pre(w)
|
65 |
-
h_w = self.post_convs(h_w, x_mask)
|
66 |
-
h_w = self.post_proj(h_w) * x_mask
|
67 |
-
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
-
z_q = e_q
|
69 |
-
for flow in self.post_flows:
|
70 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
-
logdet_tot_q += logdet_q
|
72 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
-
u = torch.sigmoid(z_u) * x_mask
|
74 |
-
z0 = (w - u) * x_mask
|
75 |
-
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
-
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
-
|
78 |
-
logdet_tot = 0
|
79 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
-
logdet_tot += logdet
|
81 |
-
z = torch.cat([z0, z1], 1)
|
82 |
-
for flow in flows:
|
83 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
-
logdet_tot = logdet_tot + logdet
|
85 |
-
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
-
return nll + logq # [b]
|
87 |
-
else:
|
88 |
-
flows = list(reversed(self.flows))
|
89 |
-
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
-
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
-
for flow in flows:
|
92 |
-
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
-
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
-
logw = z0
|
95 |
-
return logw
|
96 |
-
|
97 |
-
|
98 |
-
class DurationPredictor(nn.Module):
|
99 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
-
super().__init__()
|
101 |
-
|
102 |
-
self.in_channels = in_channels
|
103 |
-
self.filter_channels = filter_channels
|
104 |
-
self.kernel_size = kernel_size
|
105 |
-
self.p_dropout = p_dropout
|
106 |
-
self.gin_channels = gin_channels
|
107 |
-
|
108 |
-
self.drop = nn.Dropout(p_dropout)
|
109 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
-
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
-
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
-
|
115 |
-
if gin_channels != 0:
|
116 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
-
|
118 |
-
def forward(self, x, x_mask, g=None):
|
119 |
-
x = torch.detach(x)
|
120 |
-
if g is not None:
|
121 |
-
g = torch.detach(g)
|
122 |
-
x = x + self.cond(g)
|
123 |
-
x = self.conv_1(x * x_mask)
|
124 |
-
x = torch.relu(x)
|
125 |
-
x = self.norm_1(x)
|
126 |
-
x = self.drop(x)
|
127 |
-
x = self.conv_2(x * x_mask)
|
128 |
-
x = torch.relu(x)
|
129 |
-
x = self.norm_2(x)
|
130 |
-
x = self.drop(x)
|
131 |
-
x = self.proj(x * x_mask)
|
132 |
-
return x * x_mask
|
133 |
-
|
134 |
-
|
135 |
-
class TextEncoder(nn.Module):
|
136 |
-
def __init__(self,
|
137 |
-
n_vocab,
|
138 |
-
out_channels,
|
139 |
-
hidden_channels,
|
140 |
-
filter_channels,
|
141 |
-
n_heads,
|
142 |
-
n_layers,
|
143 |
-
kernel_size,
|
144 |
-
p_dropout):
|
145 |
-
super().__init__()
|
146 |
-
self.n_vocab = n_vocab
|
147 |
-
self.out_channels = out_channels
|
148 |
-
self.hidden_channels = hidden_channels
|
149 |
-
self.filter_channels = filter_channels
|
150 |
-
self.n_heads = n_heads
|
151 |
-
self.n_layers = n_layers
|
152 |
-
self.kernel_size = kernel_size
|
153 |
-
self.p_dropout = p_dropout
|
154 |
-
|
155 |
-
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
-
|
158 |
-
self.encoder = attentions.Encoder(
|
159 |
-
hidden_channels,
|
160 |
-
filter_channels,
|
161 |
-
n_heads,
|
162 |
-
n_layers,
|
163 |
-
kernel_size,
|
164 |
-
p_dropout)
|
165 |
-
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
-
|
167 |
-
def forward(self, x, x_lengths):
|
168 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
-
|
172 |
-
x = self.encoder(x * x_mask, x_mask)
|
173 |
-
stats = self.proj(x) * x_mask
|
174 |
-
|
175 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
-
return x, m, logs, x_mask
|
177 |
-
|
178 |
-
|
179 |
-
class ResidualCouplingBlock(nn.Module):
|
180 |
-
def __init__(self,
|
181 |
-
channels,
|
182 |
-
hidden_channels,
|
183 |
-
kernel_size,
|
184 |
-
dilation_rate,
|
185 |
-
n_layers,
|
186 |
-
n_flows=4,
|
187 |
-
gin_channels=0):
|
188 |
-
super().__init__()
|
189 |
-
self.channels = channels
|
190 |
-
self.hidden_channels = hidden_channels
|
191 |
-
self.kernel_size = kernel_size
|
192 |
-
self.dilation_rate = dilation_rate
|
193 |
-
self.n_layers = n_layers
|
194 |
-
self.n_flows = n_flows
|
195 |
-
self.gin_channels = gin_channels
|
196 |
-
|
197 |
-
self.flows = nn.ModuleList()
|
198 |
-
for i in range(n_flows):
|
199 |
-
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
-
self.flows.append(modules.Flip())
|
201 |
-
|
202 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
-
if not reverse:
|
204 |
-
for flow in self.flows:
|
205 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
-
else:
|
207 |
-
for flow in reversed(self.flows):
|
208 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
-
return x
|
210 |
-
|
211 |
-
|
212 |
-
class PosteriorEncoder(nn.Module):
|
213 |
-
def __init__(self,
|
214 |
-
in_channels,
|
215 |
-
out_channels,
|
216 |
-
hidden_channels,
|
217 |
-
kernel_size,
|
218 |
-
dilation_rate,
|
219 |
-
n_layers,
|
220 |
-
gin_channels=0):
|
221 |
-
super().__init__()
|
222 |
-
self.in_channels = in_channels
|
223 |
-
self.out_channels = out_channels
|
224 |
-
self.hidden_channels = hidden_channels
|
225 |
-
self.kernel_size = kernel_size
|
226 |
-
self.dilation_rate = dilation_rate
|
227 |
-
self.n_layers = n_layers
|
228 |
-
self.gin_channels = gin_channels
|
229 |
-
|
230 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
-
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
-
|
234 |
-
def forward(self, x, x_lengths, g=None):
|
235 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
-
x = self.pre(x) * x_mask
|
237 |
-
x = self.enc(x, x_mask, g=g)
|
238 |
-
stats = self.proj(x) * x_mask
|
239 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
-
return z, m, logs, x_mask
|
242 |
-
|
243 |
-
|
244 |
-
class Generator(torch.nn.Module):
|
245 |
-
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
-
super(Generator, self).__init__()
|
247 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
-
self.num_upsamples = len(upsample_rates)
|
249 |
-
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
-
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
-
|
252 |
-
self.ups = nn.ModuleList()
|
253 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
-
self.ups.append(weight_norm(
|
255 |
-
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
-
k, u, padding=(k-u)//2)))
|
257 |
-
|
258 |
-
self.resblocks = nn.ModuleList()
|
259 |
-
for i in range(len(self.ups)):
|
260 |
-
ch = upsample_initial_channel//(2**(i+1))
|
261 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
-
self.resblocks.append(resblock(ch, k, d))
|
263 |
-
|
264 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
-
self.ups.apply(init_weights)
|
266 |
-
|
267 |
-
if gin_channels != 0:
|
268 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
-
|
270 |
-
def forward(self, x, g=None):
|
271 |
-
x = self.conv_pre(x)
|
272 |
-
if g is not None:
|
273 |
-
x = x + self.cond(g)
|
274 |
-
|
275 |
-
for i in range(self.num_upsamples):
|
276 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
-
x = self.ups[i](x)
|
278 |
-
xs = None
|
279 |
-
for j in range(self.num_kernels):
|
280 |
-
if xs is None:
|
281 |
-
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
-
else:
|
283 |
-
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
-
x = xs / self.num_kernels
|
285 |
-
x = F.leaky_relu(x)
|
286 |
-
x = self.conv_post(x)
|
287 |
-
x = torch.tanh(x)
|
288 |
-
|
289 |
-
return x
|
290 |
-
|
291 |
-
def remove_weight_norm(self):
|
292 |
-
print('Removing weight norm...')
|
293 |
-
for l in self.ups:
|
294 |
-
remove_weight_norm(l)
|
295 |
-
for l in self.resblocks:
|
296 |
-
l.remove_weight_norm()
|
297 |
-
|
298 |
-
|
299 |
-
class DiscriminatorP(torch.nn.Module):
|
300 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
-
super(DiscriminatorP, self).__init__()
|
302 |
-
self.period = period
|
303 |
-
self.use_spectral_norm = use_spectral_norm
|
304 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
-
self.convs = nn.ModuleList([
|
306 |
-
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
-
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
-
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
-
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
-
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
-
])
|
312 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
-
|
314 |
-
def forward(self, x):
|
315 |
-
fmap = []
|
316 |
-
|
317 |
-
# 1d to 2d
|
318 |
-
b, c, t = x.shape
|
319 |
-
if t % self.period != 0: # pad first
|
320 |
-
n_pad = self.period - (t % self.period)
|
321 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
-
t = t + n_pad
|
323 |
-
x = x.view(b, c, t // self.period, self.period)
|
324 |
-
|
325 |
-
for l in self.convs:
|
326 |
-
x = l(x)
|
327 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
-
fmap.append(x)
|
329 |
-
x = self.conv_post(x)
|
330 |
-
fmap.append(x)
|
331 |
-
x = torch.flatten(x, 1, -1)
|
332 |
-
|
333 |
-
return x, fmap
|
334 |
-
|
335 |
-
|
336 |
-
class DiscriminatorS(torch.nn.Module):
|
337 |
-
def __init__(self, use_spectral_norm=False):
|
338 |
-
super(DiscriminatorS, self).__init__()
|
339 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
-
self.convs = nn.ModuleList([
|
341 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
-
])
|
348 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
-
|
350 |
-
def forward(self, x):
|
351 |
-
fmap = []
|
352 |
-
|
353 |
-
for l in self.convs:
|
354 |
-
x = l(x)
|
355 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
-
fmap.append(x)
|
357 |
-
x = self.conv_post(x)
|
358 |
-
fmap.append(x)
|
359 |
-
x = torch.flatten(x, 1, -1)
|
360 |
-
|
361 |
-
return x, fmap
|
362 |
-
|
363 |
-
|
364 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
-
def __init__(self, use_spectral_norm=False):
|
366 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
-
periods = [2,3,5,7,11]
|
368 |
-
|
369 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
-
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
-
self.discriminators = nn.ModuleList(discs)
|
372 |
-
|
373 |
-
def forward(self, y, y_hat):
|
374 |
-
y_d_rs = []
|
375 |
-
y_d_gs = []
|
376 |
-
fmap_rs = []
|
377 |
-
fmap_gs = []
|
378 |
-
for i, d in enumerate(self.discriminators):
|
379 |
-
y_d_r, fmap_r = d(y)
|
380 |
-
y_d_g, fmap_g = d(y_hat)
|
381 |
-
y_d_rs.append(y_d_r)
|
382 |
-
y_d_gs.append(y_d_g)
|
383 |
-
fmap_rs.append(fmap_r)
|
384 |
-
fmap_gs.append(fmap_g)
|
385 |
-
|
386 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
class SynthesizerTrn(nn.Module):
|
391 |
-
"""
|
392 |
-
Synthesizer for Training
|
393 |
-
"""
|
394 |
-
|
395 |
-
def __init__(self,
|
396 |
-
n_vocab,
|
397 |
-
spec_channels,
|
398 |
-
segment_size,
|
399 |
-
inter_channels,
|
400 |
-
hidden_channels,
|
401 |
-
filter_channels,
|
402 |
-
n_heads,
|
403 |
-
n_layers,
|
404 |
-
kernel_size,
|
405 |
-
p_dropout,
|
406 |
-
resblock,
|
407 |
-
resblock_kernel_sizes,
|
408 |
-
resblock_dilation_sizes,
|
409 |
-
upsample_rates,
|
410 |
-
upsample_initial_channel,
|
411 |
-
upsample_kernel_sizes,
|
412 |
-
n_speakers=0,
|
413 |
-
gin_channels=0,
|
414 |
-
use_sdp=True,
|
415 |
-
**kwargs):
|
416 |
-
|
417 |
-
super().__init__()
|
418 |
-
self.n_vocab = n_vocab
|
419 |
-
self.spec_channels = spec_channels
|
420 |
-
self.inter_channels = inter_channels
|
421 |
-
self.hidden_channels = hidden_channels
|
422 |
-
self.filter_channels = filter_channels
|
423 |
-
self.n_heads = n_heads
|
424 |
-
self.n_layers = n_layers
|
425 |
-
self.kernel_size = kernel_size
|
426 |
-
self.p_dropout = p_dropout
|
427 |
-
self.resblock = resblock
|
428 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
-
self.upsample_rates = upsample_rates
|
431 |
-
self.upsample_initial_channel = upsample_initial_channel
|
432 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
-
self.segment_size = segment_size
|
434 |
-
self.n_speakers = n_speakers
|
435 |
-
self.gin_channels = gin_channels
|
436 |
-
|
437 |
-
self.use_sdp = use_sdp
|
438 |
-
|
439 |
-
self.enc_p = TextEncoder(n_vocab,
|
440 |
-
inter_channels,
|
441 |
-
hidden_channels,
|
442 |
-
filter_channels,
|
443 |
-
n_heads,
|
444 |
-
n_layers,
|
445 |
-
kernel_size,
|
446 |
-
p_dropout)
|
447 |
-
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
-
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
-
|
451 |
-
if use_sdp:
|
452 |
-
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
-
else:
|
454 |
-
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
-
|
456 |
-
if n_speakers >= 1:
|
457 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
-
|
459 |
-
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
-
|
461 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
-
if self.n_speakers > 0:
|
463 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
-
else:
|
465 |
-
g = None
|
466 |
-
|
467 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
-
z_p = self.flow(z, y_mask, g=g)
|
469 |
-
|
470 |
-
with torch.no_grad():
|
471 |
-
# negative cross-entropy
|
472 |
-
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
-
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
-
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
-
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
-
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
-
|
479 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
-
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
-
|
482 |
-
w = attn.sum(2)
|
483 |
-
if self.use_sdp:
|
484 |
-
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
-
l_length = l_length / torch.sum(x_mask)
|
486 |
-
else:
|
487 |
-
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
-
logw = self.dp(x, x_mask, g=g)
|
489 |
-
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
-
|
491 |
-
# expand prior
|
492 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
-
|
495 |
-
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
-
o = self.dec(z_slice, g=g)
|
497 |
-
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
-
|
499 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
-
if self.n_speakers > 0:
|
502 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
-
else:
|
504 |
-
g = None
|
505 |
-
|
506 |
-
if self.use_sdp:
|
507 |
-
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
-
else:
|
509 |
-
logw = self.dp(x, x_mask, g=g)
|
510 |
-
w = torch.exp(logw) * x_mask * length_scale
|
511 |
-
w_ceil = torch.ceil(w)
|
512 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
-
|
517 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
-
|
520 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
-
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
-
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
-
|
525 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
-
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
-
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
-
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
-
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
-
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/models_infer.py
DELETED
@@ -1,402 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
import commons
|
7 |
-
import modules
|
8 |
-
import attentions
|
9 |
-
|
10 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
from commons import init_weights, get_padding
|
13 |
-
|
14 |
-
|
15 |
-
class StochasticDurationPredictor(nn.Module):
|
16 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
17 |
-
super().__init__()
|
18 |
-
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
-
self.in_channels = in_channels
|
20 |
-
self.filter_channels = filter_channels
|
21 |
-
self.kernel_size = kernel_size
|
22 |
-
self.p_dropout = p_dropout
|
23 |
-
self.n_flows = n_flows
|
24 |
-
self.gin_channels = gin_channels
|
25 |
-
|
26 |
-
self.log_flow = modules.Log()
|
27 |
-
self.flows = nn.ModuleList()
|
28 |
-
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
-
for i in range(n_flows):
|
30 |
-
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
31 |
-
self.flows.append(modules.Flip())
|
32 |
-
|
33 |
-
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
-
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
-
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
36 |
-
self.post_flows = nn.ModuleList()
|
37 |
-
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
-
for i in range(4):
|
39 |
-
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
40 |
-
self.post_flows.append(modules.Flip())
|
41 |
-
|
42 |
-
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
-
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
-
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
45 |
-
if gin_channels != 0:
|
46 |
-
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
-
|
48 |
-
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
49 |
-
x = torch.detach(x)
|
50 |
-
x = self.pre(x)
|
51 |
-
if g is not None:
|
52 |
-
g = torch.detach(g)
|
53 |
-
x = x + self.cond(g)
|
54 |
-
x = self.convs(x, x_mask)
|
55 |
-
x = self.proj(x) * x_mask
|
56 |
-
|
57 |
-
if not reverse:
|
58 |
-
flows = self.flows
|
59 |
-
assert w is not None
|
60 |
-
|
61 |
-
logdet_tot_q = 0
|
62 |
-
h_w = self.post_pre(w)
|
63 |
-
h_w = self.post_convs(h_w, x_mask)
|
64 |
-
h_w = self.post_proj(h_w) * x_mask
|
65 |
-
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
66 |
-
z_q = e_q
|
67 |
-
for flow in self.post_flows:
|
68 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
69 |
-
logdet_tot_q += logdet_q
|
70 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
-
u = torch.sigmoid(z_u) * x_mask
|
72 |
-
z0 = (w - u) * x_mask
|
73 |
-
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
74 |
-
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
75 |
-
|
76 |
-
logdet_tot = 0
|
77 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
78 |
-
logdet_tot += logdet
|
79 |
-
z = torch.cat([z0, z1], 1)
|
80 |
-
for flow in flows:
|
81 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
-
logdet_tot = logdet_tot + logdet
|
83 |
-
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
84 |
-
return nll + logq # [b]
|
85 |
-
else:
|
86 |
-
flows = list(reversed(self.flows))
|
87 |
-
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
-
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
89 |
-
for flow in flows:
|
90 |
-
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
-
z0, z1 = torch.split(z, [1, 1], 1)
|
92 |
-
logw = z0
|
93 |
-
return logw
|
94 |
-
|
95 |
-
|
96 |
-
class DurationPredictor(nn.Module):
|
97 |
-
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
98 |
-
super().__init__()
|
99 |
-
|
100 |
-
self.in_channels = in_channels
|
101 |
-
self.filter_channels = filter_channels
|
102 |
-
self.kernel_size = kernel_size
|
103 |
-
self.p_dropout = p_dropout
|
104 |
-
self.gin_channels = gin_channels
|
105 |
-
|
106 |
-
self.drop = nn.Dropout(p_dropout)
|
107 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
108 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
-
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
-
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
-
|
113 |
-
if gin_channels != 0:
|
114 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
115 |
-
|
116 |
-
def forward(self, x, x_mask, g=None):
|
117 |
-
x = torch.detach(x)
|
118 |
-
if g is not None:
|
119 |
-
g = torch.detach(g)
|
120 |
-
x = x + self.cond(g)
|
121 |
-
x = self.conv_1(x * x_mask)
|
122 |
-
x = torch.relu(x)
|
123 |
-
x = self.norm_1(x)
|
124 |
-
x = self.drop(x)
|
125 |
-
x = self.conv_2(x * x_mask)
|
126 |
-
x = torch.relu(x)
|
127 |
-
x = self.norm_2(x)
|
128 |
-
x = self.drop(x)
|
129 |
-
x = self.proj(x * x_mask)
|
130 |
-
return x * x_mask
|
131 |
-
|
132 |
-
|
133 |
-
class TextEncoder(nn.Module):
|
134 |
-
def __init__(self,
|
135 |
-
n_vocab,
|
136 |
-
out_channels,
|
137 |
-
hidden_channels,
|
138 |
-
filter_channels,
|
139 |
-
n_heads,
|
140 |
-
n_layers,
|
141 |
-
kernel_size,
|
142 |
-
p_dropout):
|
143 |
-
super().__init__()
|
144 |
-
self.n_vocab = n_vocab
|
145 |
-
self.out_channels = out_channels
|
146 |
-
self.hidden_channels = hidden_channels
|
147 |
-
self.filter_channels = filter_channels
|
148 |
-
self.n_heads = n_heads
|
149 |
-
self.n_layers = n_layers
|
150 |
-
self.kernel_size = kernel_size
|
151 |
-
self.p_dropout = p_dropout
|
152 |
-
|
153 |
-
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
154 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
155 |
-
|
156 |
-
self.encoder = attentions.Encoder(
|
157 |
-
hidden_channels,
|
158 |
-
filter_channels,
|
159 |
-
n_heads,
|
160 |
-
n_layers,
|
161 |
-
kernel_size,
|
162 |
-
p_dropout)
|
163 |
-
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
164 |
-
|
165 |
-
def forward(self, x, x_lengths):
|
166 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
167 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
168 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
169 |
-
|
170 |
-
x = self.encoder(x * x_mask, x_mask)
|
171 |
-
stats = self.proj(x) * x_mask
|
172 |
-
|
173 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
174 |
-
return x, m, logs, x_mask
|
175 |
-
|
176 |
-
|
177 |
-
class ResidualCouplingBlock(nn.Module):
|
178 |
-
def __init__(self,
|
179 |
-
channels,
|
180 |
-
hidden_channels,
|
181 |
-
kernel_size,
|
182 |
-
dilation_rate,
|
183 |
-
n_layers,
|
184 |
-
n_flows=4,
|
185 |
-
gin_channels=0):
|
186 |
-
super().__init__()
|
187 |
-
self.channels = channels
|
188 |
-
self.hidden_channels = hidden_channels
|
189 |
-
self.kernel_size = kernel_size
|
190 |
-
self.dilation_rate = dilation_rate
|
191 |
-
self.n_layers = n_layers
|
192 |
-
self.n_flows = n_flows
|
193 |
-
self.gin_channels = gin_channels
|
194 |
-
|
195 |
-
self.flows = nn.ModuleList()
|
196 |
-
for i in range(n_flows):
|
197 |
-
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
198 |
-
self.flows.append(modules.Flip())
|
199 |
-
|
200 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
201 |
-
if not reverse:
|
202 |
-
for flow in self.flows:
|
203 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
204 |
-
else:
|
205 |
-
for flow in reversed(self.flows):
|
206 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
207 |
-
return x
|
208 |
-
|
209 |
-
|
210 |
-
class PosteriorEncoder(nn.Module):
|
211 |
-
def __init__(self,
|
212 |
-
in_channels,
|
213 |
-
out_channels,
|
214 |
-
hidden_channels,
|
215 |
-
kernel_size,
|
216 |
-
dilation_rate,
|
217 |
-
n_layers,
|
218 |
-
gin_channels=0):
|
219 |
-
super().__init__()
|
220 |
-
self.in_channels = in_channels
|
221 |
-
self.out_channels = out_channels
|
222 |
-
self.hidden_channels = hidden_channels
|
223 |
-
self.kernel_size = kernel_size
|
224 |
-
self.dilation_rate = dilation_rate
|
225 |
-
self.n_layers = n_layers
|
226 |
-
self.gin_channels = gin_channels
|
227 |
-
|
228 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
229 |
-
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
230 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
231 |
-
|
232 |
-
def forward(self, x, x_lengths, g=None):
|
233 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
234 |
-
x = self.pre(x) * x_mask
|
235 |
-
x = self.enc(x, x_mask, g=g)
|
236 |
-
stats = self.proj(x) * x_mask
|
237 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
238 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
239 |
-
return z, m, logs, x_mask
|
240 |
-
|
241 |
-
|
242 |
-
class Generator(torch.nn.Module):
|
243 |
-
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
244 |
-
super(Generator, self).__init__()
|
245 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
246 |
-
self.num_upsamples = len(upsample_rates)
|
247 |
-
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
248 |
-
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
249 |
-
|
250 |
-
self.ups = nn.ModuleList()
|
251 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
252 |
-
self.ups.append(weight_norm(
|
253 |
-
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
254 |
-
k, u, padding=(k-u)//2)))
|
255 |
-
|
256 |
-
self.resblocks = nn.ModuleList()
|
257 |
-
for i in range(len(self.ups)):
|
258 |
-
ch = upsample_initial_channel//(2**(i+1))
|
259 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
260 |
-
self.resblocks.append(resblock(ch, k, d))
|
261 |
-
|
262 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
263 |
-
self.ups.apply(init_weights)
|
264 |
-
|
265 |
-
if gin_channels != 0:
|
266 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
267 |
-
|
268 |
-
def forward(self, x, g=None):
|
269 |
-
x = self.conv_pre(x)
|
270 |
-
if g is not None:
|
271 |
-
x = x + self.cond(g)
|
272 |
-
|
273 |
-
for i in range(self.num_upsamples):
|
274 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
275 |
-
x = self.ups[i](x)
|
276 |
-
xs = None
|
277 |
-
for j in range(self.num_kernels):
|
278 |
-
if xs is None:
|
279 |
-
xs = self.resblocks[i*self.num_kernels+j](x)
|
280 |
-
else:
|
281 |
-
xs += self.resblocks[i*self.num_kernels+j](x)
|
282 |
-
x = xs / self.num_kernels
|
283 |
-
x = F.leaky_relu(x)
|
284 |
-
x = self.conv_post(x)
|
285 |
-
x = torch.tanh(x)
|
286 |
-
|
287 |
-
return x
|
288 |
-
|
289 |
-
def remove_weight_norm(self):
|
290 |
-
print('Removing weight norm...')
|
291 |
-
for l in self.ups:
|
292 |
-
remove_weight_norm(l)
|
293 |
-
for l in self.resblocks:
|
294 |
-
l.remove_weight_norm()
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
class SynthesizerTrn(nn.Module):
|
299 |
-
"""
|
300 |
-
Synthesizer for Training
|
301 |
-
"""
|
302 |
-
|
303 |
-
def __init__(self,
|
304 |
-
n_vocab,
|
305 |
-
spec_channels,
|
306 |
-
segment_size,
|
307 |
-
inter_channels,
|
308 |
-
hidden_channels,
|
309 |
-
filter_channels,
|
310 |
-
n_heads,
|
311 |
-
n_layers,
|
312 |
-
kernel_size,
|
313 |
-
p_dropout,
|
314 |
-
resblock,
|
315 |
-
resblock_kernel_sizes,
|
316 |
-
resblock_dilation_sizes,
|
317 |
-
upsample_rates,
|
318 |
-
upsample_initial_channel,
|
319 |
-
upsample_kernel_sizes,
|
320 |
-
n_speakers=0,
|
321 |
-
gin_channels=0,
|
322 |
-
use_sdp=True,
|
323 |
-
**kwargs):
|
324 |
-
|
325 |
-
super().__init__()
|
326 |
-
self.n_vocab = n_vocab
|
327 |
-
self.spec_channels = spec_channels
|
328 |
-
self.inter_channels = inter_channels
|
329 |
-
self.hidden_channels = hidden_channels
|
330 |
-
self.filter_channels = filter_channels
|
331 |
-
self.n_heads = n_heads
|
332 |
-
self.n_layers = n_layers
|
333 |
-
self.kernel_size = kernel_size
|
334 |
-
self.p_dropout = p_dropout
|
335 |
-
self.resblock = resblock
|
336 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
337 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
338 |
-
self.upsample_rates = upsample_rates
|
339 |
-
self.upsample_initial_channel = upsample_initial_channel
|
340 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
341 |
-
self.segment_size = segment_size
|
342 |
-
self.n_speakers = n_speakers
|
343 |
-
self.gin_channels = gin_channels
|
344 |
-
|
345 |
-
self.use_sdp = use_sdp
|
346 |
-
|
347 |
-
self.enc_p = TextEncoder(n_vocab,
|
348 |
-
inter_channels,
|
349 |
-
hidden_channels,
|
350 |
-
filter_channels,
|
351 |
-
n_heads,
|
352 |
-
n_layers,
|
353 |
-
kernel_size,
|
354 |
-
p_dropout)
|
355 |
-
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
356 |
-
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
357 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
358 |
-
|
359 |
-
if use_sdp:
|
360 |
-
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
361 |
-
else:
|
362 |
-
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
363 |
-
|
364 |
-
if n_speakers > 1:
|
365 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
366 |
-
|
367 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
368 |
-
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
369 |
-
if self.n_speakers > 0:
|
370 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
371 |
-
else:
|
372 |
-
g = None
|
373 |
-
|
374 |
-
if self.use_sdp:
|
375 |
-
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
376 |
-
else:
|
377 |
-
logw = self.dp(x, x_mask, g=g)
|
378 |
-
w = torch.exp(logw) * x_mask * length_scale
|
379 |
-
w_ceil = torch.ceil(w)
|
380 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
381 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
382 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
383 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
384 |
-
|
385 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
386 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
387 |
-
|
388 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
389 |
-
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
390 |
-
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
391 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
392 |
-
|
393 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
394 |
-
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
395 |
-
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
396 |
-
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
397 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
398 |
-
z_p = self.flow(z, y_mask, g=g_src)
|
399 |
-
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
400 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
401 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/modules.py
DELETED
@@ -1,390 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import scipy
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
|
9 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
-
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
-
|
12 |
-
import commons
|
13 |
-
from commons import init_weights, get_padding
|
14 |
-
from transforms import piecewise_rational_quadratic_transform
|
15 |
-
|
16 |
-
|
17 |
-
LRELU_SLOPE = 0.1
|
18 |
-
|
19 |
-
|
20 |
-
class LayerNorm(nn.Module):
|
21 |
-
def __init__(self, channels, eps=1e-5):
|
22 |
-
super().__init__()
|
23 |
-
self.channels = channels
|
24 |
-
self.eps = eps
|
25 |
-
|
26 |
-
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
-
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
x = x.transpose(1, -1)
|
31 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
-
return x.transpose(1, -1)
|
33 |
-
|
34 |
-
|
35 |
-
class ConvReluNorm(nn.Module):
|
36 |
-
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
-
super().__init__()
|
38 |
-
self.in_channels = in_channels
|
39 |
-
self.hidden_channels = hidden_channels
|
40 |
-
self.out_channels = out_channels
|
41 |
-
self.kernel_size = kernel_size
|
42 |
-
self.n_layers = n_layers
|
43 |
-
self.p_dropout = p_dropout
|
44 |
-
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
-
|
46 |
-
self.conv_layers = nn.ModuleList()
|
47 |
-
self.norm_layers = nn.ModuleList()
|
48 |
-
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
-
self.relu_drop = nn.Sequential(
|
51 |
-
nn.ReLU(),
|
52 |
-
nn.Dropout(p_dropout))
|
53 |
-
for _ in range(n_layers-1):
|
54 |
-
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
-
self.proj.weight.data.zero_()
|
58 |
-
self.proj.bias.data.zero_()
|
59 |
-
|
60 |
-
def forward(self, x, x_mask):
|
61 |
-
x_org = x
|
62 |
-
for i in range(self.n_layers):
|
63 |
-
x = self.conv_layers[i](x * x_mask)
|
64 |
-
x = self.norm_layers[i](x)
|
65 |
-
x = self.relu_drop(x)
|
66 |
-
x = x_org + self.proj(x)
|
67 |
-
return x * x_mask
|
68 |
-
|
69 |
-
|
70 |
-
class DDSConv(nn.Module):
|
71 |
-
"""
|
72 |
-
Dialted and Depth-Separable Convolution
|
73 |
-
"""
|
74 |
-
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
-
super().__init__()
|
76 |
-
self.channels = channels
|
77 |
-
self.kernel_size = kernel_size
|
78 |
-
self.n_layers = n_layers
|
79 |
-
self.p_dropout = p_dropout
|
80 |
-
|
81 |
-
self.drop = nn.Dropout(p_dropout)
|
82 |
-
self.convs_sep = nn.ModuleList()
|
83 |
-
self.convs_1x1 = nn.ModuleList()
|
84 |
-
self.norms_1 = nn.ModuleList()
|
85 |
-
self.norms_2 = nn.ModuleList()
|
86 |
-
for i in range(n_layers):
|
87 |
-
dilation = kernel_size ** i
|
88 |
-
padding = (kernel_size * dilation - dilation) // 2
|
89 |
-
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
-
groups=channels, dilation=dilation, padding=padding
|
91 |
-
))
|
92 |
-
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
-
self.norms_1.append(LayerNorm(channels))
|
94 |
-
self.norms_2.append(LayerNorm(channels))
|
95 |
-
|
96 |
-
def forward(self, x, x_mask, g=None):
|
97 |
-
if g is not None:
|
98 |
-
x = x + g
|
99 |
-
for i in range(self.n_layers):
|
100 |
-
y = self.convs_sep[i](x * x_mask)
|
101 |
-
y = self.norms_1[i](y)
|
102 |
-
y = F.gelu(y)
|
103 |
-
y = self.convs_1x1[i](y)
|
104 |
-
y = self.norms_2[i](y)
|
105 |
-
y = F.gelu(y)
|
106 |
-
y = self.drop(y)
|
107 |
-
x = x + y
|
108 |
-
return x * x_mask
|
109 |
-
|
110 |
-
|
111 |
-
class WN(torch.nn.Module):
|
112 |
-
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
-
super(WN, self).__init__()
|
114 |
-
assert(kernel_size % 2 == 1)
|
115 |
-
self.hidden_channels =hidden_channels
|
116 |
-
self.kernel_size = kernel_size,
|
117 |
-
self.dilation_rate = dilation_rate
|
118 |
-
self.n_layers = n_layers
|
119 |
-
self.gin_channels = gin_channels
|
120 |
-
self.p_dropout = p_dropout
|
121 |
-
|
122 |
-
self.in_layers = torch.nn.ModuleList()
|
123 |
-
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
-
self.drop = nn.Dropout(p_dropout)
|
125 |
-
|
126 |
-
if gin_channels != 0:
|
127 |
-
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
-
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
-
|
130 |
-
for i in range(n_layers):
|
131 |
-
dilation = dilation_rate ** i
|
132 |
-
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
-
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
-
dilation=dilation, padding=padding)
|
135 |
-
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
-
self.in_layers.append(in_layer)
|
137 |
-
|
138 |
-
# last one is not necessary
|
139 |
-
if i < n_layers - 1:
|
140 |
-
res_skip_channels = 2 * hidden_channels
|
141 |
-
else:
|
142 |
-
res_skip_channels = hidden_channels
|
143 |
-
|
144 |
-
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
-
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
-
self.res_skip_layers.append(res_skip_layer)
|
147 |
-
|
148 |
-
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
-
output = torch.zeros_like(x)
|
150 |
-
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
-
|
152 |
-
if g is not None:
|
153 |
-
g = self.cond_layer(g)
|
154 |
-
|
155 |
-
for i in range(self.n_layers):
|
156 |
-
x_in = self.in_layers[i](x)
|
157 |
-
if g is not None:
|
158 |
-
cond_offset = i * 2 * self.hidden_channels
|
159 |
-
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
-
else:
|
161 |
-
g_l = torch.zeros_like(x_in)
|
162 |
-
|
163 |
-
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
-
x_in,
|
165 |
-
g_l,
|
166 |
-
n_channels_tensor)
|
167 |
-
acts = self.drop(acts)
|
168 |
-
|
169 |
-
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
-
if i < self.n_layers - 1:
|
171 |
-
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
-
x = (x + res_acts) * x_mask
|
173 |
-
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
-
else:
|
175 |
-
output = output + res_skip_acts
|
176 |
-
return output * x_mask
|
177 |
-
|
178 |
-
def remove_weight_norm(self):
|
179 |
-
if self.gin_channels != 0:
|
180 |
-
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
-
for l in self.in_layers:
|
182 |
-
torch.nn.utils.remove_weight_norm(l)
|
183 |
-
for l in self.res_skip_layers:
|
184 |
-
torch.nn.utils.remove_weight_norm(l)
|
185 |
-
|
186 |
-
|
187 |
-
class ResBlock1(torch.nn.Module):
|
188 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
-
super(ResBlock1, self).__init__()
|
190 |
-
self.convs1 = nn.ModuleList([
|
191 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
-
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
-
padding=get_padding(kernel_size, dilation[2])))
|
197 |
-
])
|
198 |
-
self.convs1.apply(init_weights)
|
199 |
-
|
200 |
-
self.convs2 = nn.ModuleList([
|
201 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
-
padding=get_padding(kernel_size, 1))),
|
203 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
-
padding=get_padding(kernel_size, 1))),
|
205 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
-
padding=get_padding(kernel_size, 1)))
|
207 |
-
])
|
208 |
-
self.convs2.apply(init_weights)
|
209 |
-
|
210 |
-
def forward(self, x, x_mask=None):
|
211 |
-
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
-
if x_mask is not None:
|
214 |
-
xt = xt * x_mask
|
215 |
-
xt = c1(xt)
|
216 |
-
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
-
if x_mask is not None:
|
218 |
-
xt = xt * x_mask
|
219 |
-
xt = c2(xt)
|
220 |
-
x = xt + x
|
221 |
-
if x_mask is not None:
|
222 |
-
x = x * x_mask
|
223 |
-
return x
|
224 |
-
|
225 |
-
def remove_weight_norm(self):
|
226 |
-
for l in self.convs1:
|
227 |
-
remove_weight_norm(l)
|
228 |
-
for l in self.convs2:
|
229 |
-
remove_weight_norm(l)
|
230 |
-
|
231 |
-
|
232 |
-
class ResBlock2(torch.nn.Module):
|
233 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
-
super(ResBlock2, self).__init__()
|
235 |
-
self.convs = nn.ModuleList([
|
236 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
-
padding=get_padding(kernel_size, dilation[1])))
|
240 |
-
])
|
241 |
-
self.convs.apply(init_weights)
|
242 |
-
|
243 |
-
def forward(self, x, x_mask=None):
|
244 |
-
for c in self.convs:
|
245 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
-
if x_mask is not None:
|
247 |
-
xt = xt * x_mask
|
248 |
-
xt = c(xt)
|
249 |
-
x = xt + x
|
250 |
-
if x_mask is not None:
|
251 |
-
x = x * x_mask
|
252 |
-
return x
|
253 |
-
|
254 |
-
def remove_weight_norm(self):
|
255 |
-
for l in self.convs:
|
256 |
-
remove_weight_norm(l)
|
257 |
-
|
258 |
-
|
259 |
-
class Log(nn.Module):
|
260 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
-
if not reverse:
|
262 |
-
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
-
logdet = torch.sum(-y, [1, 2])
|
264 |
-
return y, logdet
|
265 |
-
else:
|
266 |
-
x = torch.exp(x) * x_mask
|
267 |
-
return x
|
268 |
-
|
269 |
-
|
270 |
-
class Flip(nn.Module):
|
271 |
-
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
-
x = torch.flip(x, [1])
|
273 |
-
if not reverse:
|
274 |
-
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
-
return x, logdet
|
276 |
-
else:
|
277 |
-
return x
|
278 |
-
|
279 |
-
|
280 |
-
class ElementwiseAffine(nn.Module):
|
281 |
-
def __init__(self, channels):
|
282 |
-
super().__init__()
|
283 |
-
self.channels = channels
|
284 |
-
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
-
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
-
|
287 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
-
if not reverse:
|
289 |
-
y = self.m + torch.exp(self.logs) * x
|
290 |
-
y = y * x_mask
|
291 |
-
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
-
return y, logdet
|
293 |
-
else:
|
294 |
-
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
-
return x
|
296 |
-
|
297 |
-
|
298 |
-
class ResidualCouplingLayer(nn.Module):
|
299 |
-
def __init__(self,
|
300 |
-
channels,
|
301 |
-
hidden_channels,
|
302 |
-
kernel_size,
|
303 |
-
dilation_rate,
|
304 |
-
n_layers,
|
305 |
-
p_dropout=0,
|
306 |
-
gin_channels=0,
|
307 |
-
mean_only=False):
|
308 |
-
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
-
super().__init__()
|
310 |
-
self.channels = channels
|
311 |
-
self.hidden_channels = hidden_channels
|
312 |
-
self.kernel_size = kernel_size
|
313 |
-
self.dilation_rate = dilation_rate
|
314 |
-
self.n_layers = n_layers
|
315 |
-
self.half_channels = channels // 2
|
316 |
-
self.mean_only = mean_only
|
317 |
-
|
318 |
-
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
-
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
-
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
-
self.post.weight.data.zero_()
|
322 |
-
self.post.bias.data.zero_()
|
323 |
-
|
324 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
-
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
-
h = self.pre(x0) * x_mask
|
327 |
-
h = self.enc(h, x_mask, g=g)
|
328 |
-
stats = self.post(h) * x_mask
|
329 |
-
if not self.mean_only:
|
330 |
-
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
-
else:
|
332 |
-
m = stats
|
333 |
-
logs = torch.zeros_like(m)
|
334 |
-
|
335 |
-
if not reverse:
|
336 |
-
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
-
x = torch.cat([x0, x1], 1)
|
338 |
-
logdet = torch.sum(logs, [1,2])
|
339 |
-
return x, logdet
|
340 |
-
else:
|
341 |
-
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
-
x = torch.cat([x0, x1], 1)
|
343 |
-
return x
|
344 |
-
|
345 |
-
|
346 |
-
class ConvFlow(nn.Module):
|
347 |
-
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
-
super().__init__()
|
349 |
-
self.in_channels = in_channels
|
350 |
-
self.filter_channels = filter_channels
|
351 |
-
self.kernel_size = kernel_size
|
352 |
-
self.n_layers = n_layers
|
353 |
-
self.num_bins = num_bins
|
354 |
-
self.tail_bound = tail_bound
|
355 |
-
self.half_channels = in_channels // 2
|
356 |
-
|
357 |
-
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
-
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
-
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
-
self.proj.weight.data.zero_()
|
361 |
-
self.proj.bias.data.zero_()
|
362 |
-
|
363 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
-
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
-
h = self.pre(x0)
|
366 |
-
h = self.convs(h, x_mask, g=g)
|
367 |
-
h = self.proj(h) * x_mask
|
368 |
-
|
369 |
-
b, c, t = x0.shape
|
370 |
-
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
-
|
372 |
-
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
-
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
-
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
-
|
376 |
-
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
-
unnormalized_widths,
|
378 |
-
unnormalized_heights,
|
379 |
-
unnormalized_derivatives,
|
380 |
-
inverse=reverse,
|
381 |
-
tails='linear',
|
382 |
-
tail_bound=self.tail_bound
|
383 |
-
)
|
384 |
-
|
385 |
-
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
-
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
-
if not reverse:
|
388 |
-
return x, logdet
|
389 |
-
else:
|
390 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/monotonic_align/__init__.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
from .monotonic_align.core import maximum_path_c
|
4 |
-
|
5 |
-
|
6 |
-
def maximum_path(neg_cent, mask):
|
7 |
-
""" Cython optimized version.
|
8 |
-
neg_cent: [b, t_t, t_s]
|
9 |
-
mask: [b, t_t, t_s]
|
10 |
-
"""
|
11 |
-
device = neg_cent.device
|
12 |
-
dtype = neg_cent.dtype
|
13 |
-
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
-
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
-
|
16 |
-
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
-
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
-
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
-
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/monotonic_align/core.pyx
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
cimport cython
|
2 |
-
from cython.parallel import prange
|
3 |
-
|
4 |
-
|
5 |
-
@cython.boundscheck(False)
|
6 |
-
@cython.wraparound(False)
|
7 |
-
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
-
cdef int x
|
9 |
-
cdef int y
|
10 |
-
cdef float v_prev
|
11 |
-
cdef float v_cur
|
12 |
-
cdef float tmp
|
13 |
-
cdef int index = t_x - 1
|
14 |
-
|
15 |
-
for y in range(t_y):
|
16 |
-
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
-
if x == y:
|
18 |
-
v_cur = max_neg_val
|
19 |
-
else:
|
20 |
-
v_cur = value[y-1, x]
|
21 |
-
if x == 0:
|
22 |
-
if y == 0:
|
23 |
-
v_prev = 0.
|
24 |
-
else:
|
25 |
-
v_prev = max_neg_val
|
26 |
-
else:
|
27 |
-
v_prev = value[y-1, x-1]
|
28 |
-
value[y, x] += max(v_prev, v_cur)
|
29 |
-
|
30 |
-
for y in range(t_y - 1, -1, -1):
|
31 |
-
path[y, index] = 1
|
32 |
-
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
-
index = index - 1
|
34 |
-
|
35 |
-
|
36 |
-
@cython.boundscheck(False)
|
37 |
-
@cython.wraparound(False)
|
38 |
-
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
-
cdef int b = paths.shape[0]
|
40 |
-
cdef int i
|
41 |
-
for i in prange(b, nogil=True):
|
42 |
-
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/monotonic_align/setup.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from distutils.core import setup
|
2 |
-
from Cython.Build import cythonize
|
3 |
-
import numpy
|
4 |
-
|
5 |
-
setup(
|
6 |
-
name = 'monotonic_align',
|
7 |
-
ext_modules = cythonize("core.pyx"),
|
8 |
-
include_dirs=[numpy.get_include()]
|
9 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/preprocess_v2.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import argparse
|
3 |
-
import json
|
4 |
-
if __name__ == "__main__":
|
5 |
-
parser = argparse.ArgumentParser()
|
6 |
-
parser.add_argument("--add_auxiliary_data", type=bool, help="Whether to add extra data as fine-tuning helper")
|
7 |
-
parser.add_argument("--languages", default="CJE")
|
8 |
-
args = parser.parse_args()
|
9 |
-
if args.languages == "CJE":
|
10 |
-
langs = ["[ZH]", "[JA]", "[EN]"]
|
11 |
-
elif args.languages == "CJ":
|
12 |
-
langs = ["[ZH]", "[JA]"]
|
13 |
-
elif args.languages == "C":
|
14 |
-
langs = ["[ZH]"]
|
15 |
-
new_annos = []
|
16 |
-
# Source 1: transcribed short audios
|
17 |
-
if os.path.exists("short_character_anno.txt"):
|
18 |
-
with open("short_character_anno.txt", 'r', encoding='utf-8') as f:
|
19 |
-
short_character_anno = f.readlines()
|
20 |
-
new_annos += short_character_anno
|
21 |
-
# Source 2: transcribed long audio segments
|
22 |
-
if os.path.exists("long_character_anno.txt"):
|
23 |
-
with open("long_character_anno.txt", 'r', encoding='utf-8') as f:
|
24 |
-
long_character_anno = f.readlines()
|
25 |
-
new_annos += long_character_anno
|
26 |
-
|
27 |
-
# Get all speaker names
|
28 |
-
speakers = []
|
29 |
-
for line in new_annos:
|
30 |
-
path, speaker, text = line.split("|")
|
31 |
-
if speaker not in speakers:
|
32 |
-
speakers.append(speaker)
|
33 |
-
assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure."
|
34 |
-
# Source 3 (Optional): sampled audios as extra training helpers
|
35 |
-
if args.add_auxiliary_data:
|
36 |
-
with open("sampled_audio4ft.txt", 'r', encoding='utf-8') as f:
|
37 |
-
old_annos = f.readlines()
|
38 |
-
# filter old_annos according to supported languages
|
39 |
-
filtered_old_annos = []
|
40 |
-
for line in old_annos:
|
41 |
-
for lang in langs:
|
42 |
-
if lang in line:
|
43 |
-
filtered_old_annos.append(line)
|
44 |
-
old_annos = filtered_old_annos
|
45 |
-
for line in old_annos:
|
46 |
-
path, speaker, text = line.split("|")
|
47 |
-
if speaker not in speakers:
|
48 |
-
speakers.append(speaker)
|
49 |
-
num_old_voices = len(old_annos)
|
50 |
-
num_new_voices = len(new_annos)
|
51 |
-
# STEP 1: balance number of new & old voices
|
52 |
-
cc_duplicate = num_old_voices // num_new_voices
|
53 |
-
if cc_duplicate == 0:
|
54 |
-
cc_duplicate = 1
|
55 |
-
|
56 |
-
|
57 |
-
# STEP 2: modify config file
|
58 |
-
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
59 |
-
hps = json.load(f)
|
60 |
-
|
61 |
-
# assign ids to new speakers
|
62 |
-
speaker2id = {}
|
63 |
-
for i, speaker in enumerate(speakers):
|
64 |
-
speaker2id[speaker] = i
|
65 |
-
# modify n_speakers
|
66 |
-
hps['data']["n_speakers"] = len(speakers)
|
67 |
-
# overwrite speaker names
|
68 |
-
hps['speakers'] = speaker2id
|
69 |
-
hps['train']['log_interval'] = 100
|
70 |
-
hps['train']['eval_interval'] = 1000
|
71 |
-
hps['train']['batch_size'] = 16
|
72 |
-
hps['data']['training_files'] = "final_annotation_train.txt"
|
73 |
-
hps['data']['validation_files'] = "final_annotation_val.txt"
|
74 |
-
# save modified config
|
75 |
-
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
76 |
-
json.dump(hps, f, indent=2)
|
77 |
-
|
78 |
-
# STEP 3: clean annotations, replace speaker names with assigned speaker IDs
|
79 |
-
import text
|
80 |
-
cleaned_new_annos = []
|
81 |
-
for i, line in enumerate(new_annos):
|
82 |
-
path, speaker, txt = line.split("|")
|
83 |
-
if len(txt) > 150:
|
84 |
-
continue
|
85 |
-
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
86 |
-
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
87 |
-
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
88 |
-
cleaned_old_annos = []
|
89 |
-
for i, line in enumerate(old_annos):
|
90 |
-
path, speaker, txt = line.split("|")
|
91 |
-
if len(txt) > 150:
|
92 |
-
continue
|
93 |
-
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
94 |
-
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
95 |
-
cleaned_old_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
96 |
-
# merge with old annotation
|
97 |
-
final_annos = cleaned_old_annos + cc_duplicate * cleaned_new_annos
|
98 |
-
# save annotation file
|
99 |
-
with open("final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
100 |
-
for line in final_annos:
|
101 |
-
f.write(line)
|
102 |
-
# save annotation file for validation
|
103 |
-
with open("final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
104 |
-
for line in cleaned_new_annos:
|
105 |
-
f.write(line)
|
106 |
-
print("finished")
|
107 |
-
else:
|
108 |
-
# Do not add extra helper data
|
109 |
-
# STEP 1: modify config file
|
110 |
-
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
111 |
-
hps = json.load(f)
|
112 |
-
|
113 |
-
# assign ids to new speakers
|
114 |
-
speaker2id = {}
|
115 |
-
for i, speaker in enumerate(speakers):
|
116 |
-
speaker2id[speaker] = i
|
117 |
-
# modify n_speakers
|
118 |
-
hps['data']["n_speakers"] = len(speakers)
|
119 |
-
# overwrite speaker names
|
120 |
-
hps['speakers'] = speaker2id
|
121 |
-
hps['train']['log_interval'] = 10
|
122 |
-
hps['train']['eval_interval'] = 100
|
123 |
-
hps['train']['batch_size'] = 16
|
124 |
-
hps['data']['training_files'] = "final_annotation_train.txt"
|
125 |
-
hps['data']['validation_files'] = "final_annotation_val.txt"
|
126 |
-
# save modified config
|
127 |
-
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
128 |
-
json.dump(hps, f, indent=2)
|
129 |
-
|
130 |
-
# STEP 2: clean annotations, replace speaker names with assigned speaker IDs
|
131 |
-
import text
|
132 |
-
|
133 |
-
cleaned_new_annos = []
|
134 |
-
for i, line in enumerate(new_annos):
|
135 |
-
path, speaker, txt = line.split("|")
|
136 |
-
if len(txt) > 150:
|
137 |
-
continue
|
138 |
-
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "")
|
139 |
-
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
140 |
-
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
141 |
-
|
142 |
-
final_annos = cleaned_new_annos
|
143 |
-
# save annotation file
|
144 |
-
with open("final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
145 |
-
for line in final_annos:
|
146 |
-
f.write(line)
|
147 |
-
# save annotation file for validation
|
148 |
-
with open("final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
149 |
-
for line in cleaned_new_annos:
|
150 |
-
f.write(line)
|
151 |
-
print("finished")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/rearrange_speaker.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import argparse
|
3 |
-
import json
|
4 |
-
|
5 |
-
if __name__ == "__main__":
|
6 |
-
parser = argparse.ArgumentParser()
|
7 |
-
parser.add_argument("--model_dir", type=str, default="./OUTPUT_MODEL/G_latest.pth")
|
8 |
-
parser.add_argument("--config_dir", type=str, default="./configs/modified_finetune_speaker.json")
|
9 |
-
args = parser.parse_args()
|
10 |
-
|
11 |
-
model_sd = torch.load(args.model_dir, map_location='cpu')
|
12 |
-
with open(args.config_dir, 'r', encoding='utf-8') as f:
|
13 |
-
hps = json.load(f)
|
14 |
-
|
15 |
-
valid_speakers = list(hps['speakers'].keys())
|
16 |
-
if hps['data']['n_speakers'] > len(valid_speakers):
|
17 |
-
new_emb_g = torch.zeros([len(valid_speakers), 256])
|
18 |
-
old_emb_g = model_sd['model']['emb_g.weight']
|
19 |
-
for i, speaker in enumerate(valid_speakers):
|
20 |
-
new_emb_g[i, :] = old_emb_g[hps['speakers'][speaker], :]
|
21 |
-
hps['speakers'][speaker] = i
|
22 |
-
hps['data']['n_speakers'] = len(valid_speakers)
|
23 |
-
model_sd['model']['emb_g.weight'] = new_emb_g
|
24 |
-
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
25 |
-
json.dump(hps, f, indent=2)
|
26 |
-
torch.save(model_sd, "./G_latest.pth")
|
27 |
-
else:
|
28 |
-
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
29 |
-
json.dump(hps, f, indent=2)
|
30 |
-
torch.save(model_sd, "./G_latest.pth")
|
31 |
-
# save another config file copy in MoeGoe format
|
32 |
-
hps['speakers'] = valid_speakers
|
33 |
-
with open("./moegoe_config.json", 'w', encoding='utf-8') as f:
|
34 |
-
json.dump(hps, f, indent=2)
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/requirements.txt
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
Cython
|
2 |
-
librosa==0.9.1
|
3 |
-
numpy
|
4 |
-
scipy
|
5 |
-
tensorboard
|
6 |
-
torch==1.13.1
|
7 |
-
torchvision==0.14.1
|
8 |
-
torchaudio==0.13.1
|
9 |
-
unidecode
|
10 |
-
pyopenjtalk
|
11 |
-
jamo
|
12 |
-
pypinyin
|
13 |
-
jieba
|
14 |
-
protobuf
|
15 |
-
cn2an
|
16 |
-
inflect
|
17 |
-
eng_to_ipa
|
18 |
-
ko_pron
|
19 |
-
indic_transliteration==2.3.37
|
20 |
-
num_thai==0.0.5
|
21 |
-
opencc==1.1.1
|
22 |
-
demucs
|
23 |
-
openai-whisper
|
24 |
-
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/short_audio_transcribe.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import whisper
|
2 |
-
import os
|
3 |
-
import torchaudio
|
4 |
-
import argparse
|
5 |
-
import torch
|
6 |
-
|
7 |
-
lang2token = {
|
8 |
-
'zh': "[ZH]",
|
9 |
-
'ja': "[JA]",
|
10 |
-
"en": "[EN]",
|
11 |
-
}
|
12 |
-
def transcribe_one(audio_path):
|
13 |
-
# load audio and pad/trim it to fit 30 seconds
|
14 |
-
audio = whisper.load_audio(audio_path)
|
15 |
-
audio = whisper.pad_or_trim(audio)
|
16 |
-
|
17 |
-
# make log-Mel spectrogram and move to the same device as the model
|
18 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
19 |
-
|
20 |
-
# detect the spoken language
|
21 |
-
_, probs = model.detect_language(mel)
|
22 |
-
print(f"Detected language: {max(probs, key=probs.get)}")
|
23 |
-
lang = max(probs, key=probs.get)
|
24 |
-
# decode the audio
|
25 |
-
options = whisper.DecodingOptions()
|
26 |
-
result = whisper.decode(model, mel, options)
|
27 |
-
|
28 |
-
# print the recognized text
|
29 |
-
print(result.text)
|
30 |
-
return lang, result.text
|
31 |
-
if __name__ == "__main__":
|
32 |
-
parser = argparse.ArgumentParser()
|
33 |
-
parser.add_argument("--languages", default="CJE")
|
34 |
-
parser.add_argument("--whisper_size", default="medium")
|
35 |
-
args = parser.parse_args()
|
36 |
-
if args.languages == "CJE":
|
37 |
-
lang2token = {
|
38 |
-
'zh': "[ZH]",
|
39 |
-
'ja': "[JA]",
|
40 |
-
"en": "[EN]",
|
41 |
-
}
|
42 |
-
elif args.languages == "CJ":
|
43 |
-
lang2token = {
|
44 |
-
'zh': "[ZH]",
|
45 |
-
'ja': "[JA]",
|
46 |
-
}
|
47 |
-
elif args.languages == "C":
|
48 |
-
lang2token = {
|
49 |
-
'zh': "[ZH]",
|
50 |
-
}
|
51 |
-
assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
52 |
-
model = whisper.load_model(args.whisper_size)
|
53 |
-
parent_dir = "./custom_character_voice/"
|
54 |
-
speaker_names = list(os.walk(parent_dir))[0][1]
|
55 |
-
speaker_annos = []
|
56 |
-
# resample audios
|
57 |
-
for speaker in speaker_names:
|
58 |
-
for i, wavfile in enumerate(list(os.walk(parent_dir + speaker))[0][2]):
|
59 |
-
# try to load file as audio
|
60 |
-
if wavfile.startswith("processed_"):
|
61 |
-
continue
|
62 |
-
try:
|
63 |
-
wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,
|
64 |
-
channels_first=True)
|
65 |
-
wav = wav.mean(dim=0).unsqueeze(0)
|
66 |
-
if sr != 22050:
|
67 |
-
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=22050)(wav)
|
68 |
-
if wav.shape[1] / sr > 20:
|
69 |
-
print(f"{wavfile} too long, ignoring\n")
|
70 |
-
save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"
|
71 |
-
torchaudio.save(save_path, wav, 22050, channels_first=True)
|
72 |
-
# transcribe text
|
73 |
-
lang, text = transcribe_one(save_path)
|
74 |
-
if lang not in list(lang2token.keys()):
|
75 |
-
print(f"{lang} not supported, ignoring\n")
|
76 |
-
continue
|
77 |
-
text = lang2token[lang] + text + lang2token[lang] + "\n"
|
78 |
-
speaker_annos.append(save_path + "|" + speaker + "|" + text)
|
79 |
-
except:
|
80 |
-
continue
|
81 |
-
|
82 |
-
# # clean annotation
|
83 |
-
# import argparse
|
84 |
-
# import text
|
85 |
-
# from utils import load_filepaths_and_text
|
86 |
-
# for i, line in enumerate(speaker_annos):
|
87 |
-
# path, sid, txt = line.split("|")
|
88 |
-
# cleaned_text = text._clean_text(txt, ["cjke_cleaners2"])
|
89 |
-
# cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
90 |
-
# speaker_annos[i] = path + "|" + sid + "|" + cleaned_text
|
91 |
-
# write into annotation
|
92 |
-
if len(speaker_annos) == 0:
|
93 |
-
print("Warning: no short audios found, this IS expected if you have only uploaded long audios, videos or video links.")
|
94 |
-
print("this IS NOT expected if you have uploaded a zip file of short audios. Please check your file structure or make sure your audio language is supported.")
|
95 |
-
with open("short_character_anno.txt", 'w', encoding='utf-8') as f:
|
96 |
-
for line in speaker_annos:
|
97 |
-
f.write(line)
|
98 |
-
|
99 |
-
# import json
|
100 |
-
# # generate new config
|
101 |
-
# with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
102 |
-
# hps = json.load(f)
|
103 |
-
# # modify n_speakers
|
104 |
-
# hps['data']["n_speakers"] = 1000 + len(speaker2id)
|
105 |
-
# # add speaker names
|
106 |
-
# for speaker in speaker_names:
|
107 |
-
# hps['speakers'][speaker] = speaker2id[speaker]
|
108 |
-
# # save modified config
|
109 |
-
# with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
110 |
-
# json.dump(hps, f, indent=2)
|
111 |
-
# print("finished")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/text/LICENSE
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
Copyright (c) 2017 Keith Ito
|
2 |
-
|
3 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
-
of this software and associated documentation files (the "Software"), to deal
|
5 |
-
in the Software without restriction, including without limitation the rights
|
6 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
-
copies of the Software, and to permit persons to whom the Software is
|
8 |
-
furnished to do so, subject to the following conditions:
|
9 |
-
|
10 |
-
The above copyright notice and this permission notice shall be included in
|
11 |
-
all copies or substantial portions of the Software.
|
12 |
-
|
13 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
-
THE SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/text/__init__.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
""" from https://github.com/keithito/tacotron """
|
2 |
-
from text import cleaners
|
3 |
-
from text.symbols import symbols
|
4 |
-
|
5 |
-
|
6 |
-
# Mappings from symbol to numeric ID and vice versa:
|
7 |
-
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
-
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
-
|
10 |
-
|
11 |
-
def text_to_sequence(text, symbols, cleaner_names):
|
12 |
-
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
-
Args:
|
14 |
-
text: string to convert to a sequence
|
15 |
-
cleaner_names: names of the cleaner functions to run the text through
|
16 |
-
Returns:
|
17 |
-
List of integers corresponding to the symbols in the text
|
18 |
-
'''
|
19 |
-
sequence = []
|
20 |
-
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
21 |
-
clean_text = _clean_text(text, cleaner_names)
|
22 |
-
print(clean_text)
|
23 |
-
print(f" length:{len(clean_text)}")
|
24 |
-
for symbol in clean_text:
|
25 |
-
if symbol not in symbol_to_id.keys():
|
26 |
-
continue
|
27 |
-
symbol_id = symbol_to_id[symbol]
|
28 |
-
sequence += [symbol_id]
|
29 |
-
print(f" length:{len(sequence)}")
|
30 |
-
return sequence
|
31 |
-
|
32 |
-
|
33 |
-
def cleaned_text_to_sequence(cleaned_text, symbols):
|
34 |
-
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
35 |
-
Args:
|
36 |
-
text: string to convert to a sequence
|
37 |
-
Returns:
|
38 |
-
List of integers corresponding to the symbols in the text
|
39 |
-
'''
|
40 |
-
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
41 |
-
sequence = [symbol_to_id[symbol] for symbol in cleaned_text if symbol in symbol_to_id.keys()]
|
42 |
-
return sequence
|
43 |
-
|
44 |
-
|
45 |
-
def sequence_to_text(sequence):
|
46 |
-
'''Converts a sequence of IDs back to a string'''
|
47 |
-
result = ''
|
48 |
-
for symbol_id in sequence:
|
49 |
-
s = _id_to_symbol[symbol_id]
|
50 |
-
result += s
|
51 |
-
return result
|
52 |
-
|
53 |
-
|
54 |
-
def _clean_text(text, cleaner_names):
|
55 |
-
for name in cleaner_names:
|
56 |
-
cleaner = getattr(cleaners, name)
|
57 |
-
if not cleaner:
|
58 |
-
raise Exception('Unknown cleaner: %s' % name)
|
59 |
-
text = cleaner(text)
|
60 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VITS-fast-fine-tuning/text/__pycache__/__init__.cpython-37.pyc
DELETED
Binary file (2.34 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/cleaners.cpython-37.pyc
DELETED
Binary file (5.45 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/english.cpython-37.pyc
DELETED
Binary file (4.93 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/japanese.cpython-37.pyc
DELETED
Binary file (4.6 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/korean.cpython-37.pyc
DELETED
Binary file (5.75 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/mandarin.cpython-37.pyc
DELETED
Binary file (7.51 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/sanskrit.cpython-37.pyc
DELETED
Binary file (1.63 kB)
|
|
VITS-fast-fine-tuning/text/__pycache__/symbols.cpython-37.pyc
DELETED
Binary file (417 Bytes)
|
|