Spaces:
Paused
Paused
File size: 6,063 Bytes
508927a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from typing import List
import torch
from torch import nn as nn
from annotator.uniformer.mmcv.runner import force_fp32
from .furthest_point_sample import (furthest_point_sample,
furthest_point_sample_with_dist)
def calc_square_dist(point_feat_a, point_feat_b, norm=True):
"""Calculating square distance between a and b.
Args:
point_feat_a (Tensor): (B, N, C) Feature vector of each point.
point_feat_b (Tensor): (B, M, C) Feature vector of each point.
norm (Bool, optional): Whether to normalize the distance.
Default: True.
Returns:
Tensor: (B, N, M) Distance between each pair points.
"""
num_channel = point_feat_a.shape[-1]
# [bs, n, 1]
a_square = torch.sum(point_feat_a.unsqueeze(dim=2).pow(2), dim=-1)
# [bs, 1, m]
b_square = torch.sum(point_feat_b.unsqueeze(dim=1).pow(2), dim=-1)
corr_matrix = torch.matmul(point_feat_a, point_feat_b.transpose(1, 2))
dist = a_square + b_square - 2 * corr_matrix
if norm:
dist = torch.sqrt(dist) / num_channel
return dist
def get_sampler_cls(sampler_type):
"""Get the type and mode of points sampler.
Args:
sampler_type (str): The type of points sampler.
The valid value are "D-FPS", "F-FPS", or "FS".
Returns:
class: Points sampler type.
"""
sampler_mappings = {
'D-FPS': DFPSSampler,
'F-FPS': FFPSSampler,
'FS': FSSampler,
}
try:
return sampler_mappings[sampler_type]
except KeyError:
raise KeyError(
f'Supported `sampler_type` are {sampler_mappings.keys()}, but got \
{sampler_type}')
class PointsSampler(nn.Module):
"""Points sampling.
Args:
num_point (list[int]): Number of sample points.
fps_mod_list (list[str], optional): Type of FPS method, valid mod
['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
F-FPS: using feature distances for FPS.
D-FPS: using Euclidean distances of points for FPS.
FS: using F-FPS and D-FPS simultaneously.
fps_sample_range_list (list[int], optional):
Range of points to apply FPS. Default: [-1].
"""
def __init__(self,
num_point: List[int],
fps_mod_list: List[str] = ['D-FPS'],
fps_sample_range_list: List[int] = [-1]):
super().__init__()
# FPS would be applied to different fps_mod in the list,
# so the length of the num_point should be equal to
# fps_mod_list and fps_sample_range_list.
assert len(num_point) == len(fps_mod_list) == len(
fps_sample_range_list)
self.num_point = num_point
self.fps_sample_range_list = fps_sample_range_list
self.samplers = nn.ModuleList()
for fps_mod in fps_mod_list:
self.samplers.append(get_sampler_cls(fps_mod)())
self.fp16_enabled = False
@force_fp32()
def forward(self, points_xyz, features):
"""
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
features (Tensor): (B, C, N) Descriptors of the features.
Returns:
Tensor: (B, npoint, sample_num) Indices of sampled points.
"""
indices = []
last_fps_end_index = 0
for fps_sample_range, sampler, npoint in zip(
self.fps_sample_range_list, self.samplers, self.num_point):
assert fps_sample_range < points_xyz.shape[1]
if fps_sample_range == -1:
sample_points_xyz = points_xyz[:, last_fps_end_index:]
if features is not None:
sample_features = features[:, :, last_fps_end_index:]
else:
sample_features = None
else:
sample_points_xyz = \
points_xyz[:, last_fps_end_index:fps_sample_range]
if features is not None:
sample_features = features[:, :, last_fps_end_index:
fps_sample_range]
else:
sample_features = None
fps_idx = sampler(sample_points_xyz.contiguous(), sample_features,
npoint)
indices.append(fps_idx + last_fps_end_index)
last_fps_end_index += fps_sample_range
indices = torch.cat(indices, dim=1)
return indices
class DFPSSampler(nn.Module):
"""Using Euclidean distances of points for FPS."""
def __init__(self):
super().__init__()
def forward(self, points, features, npoint):
"""Sampling points with D-FPS."""
fps_idx = furthest_point_sample(points.contiguous(), npoint)
return fps_idx
class FFPSSampler(nn.Module):
"""Using feature distances for FPS."""
def __init__(self):
super().__init__()
def forward(self, points, features, npoint):
"""Sampling points with F-FPS."""
assert features is not None, \
'feature input to FFPS_Sampler should not be None'
features_for_fps = torch.cat([points, features.transpose(1, 2)], dim=2)
features_dist = calc_square_dist(
features_for_fps, features_for_fps, norm=False)
fps_idx = furthest_point_sample_with_dist(features_dist, npoint)
return fps_idx
class FSSampler(nn.Module):
"""Using F-FPS and D-FPS simultaneously."""
def __init__(self):
super().__init__()
def forward(self, points, features, npoint):
"""Sampling points with FS_Sampling."""
assert features is not None, \
'feature input to FS_Sampler should not be None'
ffps_sampler = FFPSSampler()
dfps_sampler = DFPSSampler()
fps_idx_ffps = ffps_sampler(points, features, npoint)
fps_idx_dfps = dfps_sampler(points, features, npoint)
fps_idx = torch.cat([fps_idx_ffps, fps_idx_dfps], dim=1)
return fps_idx
|