Spaces:
Paused
Paused
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import annotator.uniformer.mmcv as mmcv | |
try: | |
import torch | |
except ImportError: | |
torch = None | |
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): | |
"""Convert tensor to 3-channel images. | |
Args: | |
tensor (torch.Tensor): Tensor that contains multiple images, shape ( | |
N, C, H, W). | |
mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0). | |
std (tuple[float], optional): Standard deviation of images. | |
Defaults to (1, 1, 1). | |
to_rgb (bool, optional): Whether the tensor was converted to RGB | |
format in the first place. If so, convert it back to BGR. | |
Defaults to True. | |
Returns: | |
list[np.ndarray]: A list that contains multiple images. | |
""" | |
if torch is None: | |
raise RuntimeError('pytorch is not installed') | |
assert torch.is_tensor(tensor) and tensor.ndim == 4 | |
assert len(mean) == 3 | |
assert len(std) == 3 | |
num_imgs = tensor.size(0) | |
mean = np.array(mean, dtype=np.float32) | |
std = np.array(std, dtype=np.float32) | |
imgs = [] | |
for img_id in range(num_imgs): | |
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) | |
img = mmcv.imdenormalize( | |
img, mean, std, to_bgr=to_rgb).astype(np.uint8) | |
imgs.append(np.ascontiguousarray(img)) | |
return imgs | |