Spaces:
Paused
Paused
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair, _single | |
from annotator.uniformer.mmcv.utils import deprecated_api_warning | |
from ..cnn import CONV_LAYERS | |
from ..utils import ext_loader, print_log | |
ext_module = ext_loader.load_ext('_ext', [ | |
'deform_conv_forward', 'deform_conv_backward_input', | |
'deform_conv_backward_parameters' | |
]) | |
class DeformConv2dFunction(Function): | |
def symbolic(g, | |
input, | |
offset, | |
weight, | |
stride, | |
padding, | |
dilation, | |
groups, | |
deform_groups, | |
bias=False, | |
im2col_step=32): | |
return g.op( | |
'mmcv::MMCVDeformConv2d', | |
input, | |
offset, | |
weight, | |
stride_i=stride, | |
padding_i=padding, | |
dilation_i=dilation, | |
groups_i=groups, | |
deform_groups_i=deform_groups, | |
bias_i=bias, | |
im2col_step_i=im2col_step) | |
def forward(ctx, | |
input, | |
offset, | |
weight, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deform_groups=1, | |
bias=False, | |
im2col_step=32): | |
if input is not None and input.dim() != 4: | |
raise ValueError( | |
f'Expected 4D tensor as input, got {input.dim()}D tensor \ | |
instead.') | |
assert bias is False, 'Only support bias is False.' | |
ctx.stride = _pair(stride) | |
ctx.padding = _pair(padding) | |
ctx.dilation = _pair(dilation) | |
ctx.groups = groups | |
ctx.deform_groups = deform_groups | |
ctx.im2col_step = im2col_step | |
# When pytorch version >= 1.6.0, amp is adopted for fp16 mode; | |
# amp won't cast the type of model (float32), but "offset" is cast | |
# to float16 by nn.Conv2d automatically, leading to the type | |
# mismatch with input (when it is float32) or weight. | |
# The flag for whether to use fp16 or amp is the type of "offset", | |
# we cast weight and input to temporarily support fp16 and amp | |
# whatever the pytorch version is. | |
input = input.type_as(offset) | |
weight = weight.type_as(input) | |
ctx.save_for_backward(input, offset, weight) | |
output = input.new_empty( | |
DeformConv2dFunction._output_size(ctx, input, weight)) | |
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones | |
cur_im2col_step = min(ctx.im2col_step, input.size(0)) | |
assert (input.size(0) % | |
cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
ext_module.deform_conv_forward( | |
input, | |
weight, | |
offset, | |
output, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
kW=weight.size(3), | |
kH=weight.size(2), | |
dW=ctx.stride[1], | |
dH=ctx.stride[0], | |
padW=ctx.padding[1], | |
padH=ctx.padding[0], | |
dilationW=ctx.dilation[1], | |
dilationH=ctx.dilation[0], | |
group=ctx.groups, | |
deformable_group=ctx.deform_groups, | |
im2col_step=cur_im2col_step) | |
return output | |
def backward(ctx, grad_output): | |
input, offset, weight = ctx.saved_tensors | |
grad_input = grad_offset = grad_weight = None | |
cur_im2col_step = min(ctx.im2col_step, input.size(0)) | |
assert (input.size(0) % cur_im2col_step | |
) == 0, 'batch size must be divisible by im2col_step' | |
grad_output = grad_output.contiguous() | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
ext_module.deform_conv_backward_input( | |
input, | |
offset, | |
grad_output, | |
grad_input, | |
grad_offset, | |
weight, | |
ctx.bufs_[0], | |
kW=weight.size(3), | |
kH=weight.size(2), | |
dW=ctx.stride[1], | |
dH=ctx.stride[0], | |
padW=ctx.padding[1], | |
padH=ctx.padding[0], | |
dilationW=ctx.dilation[1], | |
dilationH=ctx.dilation[0], | |
group=ctx.groups, | |
deformable_group=ctx.deform_groups, | |
im2col_step=cur_im2col_step) | |
if ctx.needs_input_grad[2]: | |
grad_weight = torch.zeros_like(weight) | |
ext_module.deform_conv_backward_parameters( | |
input, | |
offset, | |
grad_output, | |
grad_weight, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
kW=weight.size(3), | |
kH=weight.size(2), | |
dW=ctx.stride[1], | |
dH=ctx.stride[0], | |
padW=ctx.padding[1], | |
padH=ctx.padding[0], | |
dilationW=ctx.dilation[1], | |
dilationH=ctx.dilation[0], | |
group=ctx.groups, | |
deformable_group=ctx.deform_groups, | |
scale=1, | |
im2col_step=cur_im2col_step) | |
return grad_input, grad_offset, grad_weight, \ | |
None, None, None, None, None, None, None | |
def _output_size(ctx, input, weight): | |
channels = weight.size(0) | |
output_size = (input.size(0), channels) | |
for d in range(input.dim() - 2): | |
in_size = input.size(d + 2) | |
pad = ctx.padding[d] | |
kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1 | |
stride_ = ctx.stride[d] | |
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) | |
if not all(map(lambda s: s > 0, output_size)): | |
raise ValueError( | |
'convolution input is too small (output would be ' + | |
'x'.join(map(str, output_size)) + ')') | |
return output_size | |
deform_conv2d = DeformConv2dFunction.apply | |
class DeformConv2d(nn.Module): | |
r"""Deformable 2D convolution. | |
Applies a deformable 2D convolution over an input signal composed of | |
several input planes. DeformConv2d was described in the paper | |
`Deformable Convolutional Networks | |
<https://arxiv.org/pdf/1703.06211.pdf>`_ | |
Note: | |
The argument ``im2col_step`` was added in version 1.3.17, which means | |
number of samples processed by the ``im2col_cuda_kernel`` per call. | |
It enables users to define ``batch_size`` and ``im2col_step`` more | |
flexibly and solved `issue mmcv#1440 | |
<https://github.com/open-mmlab/mmcv/issues/1440>`_. | |
Args: | |
in_channels (int): Number of channels in the input image. | |
out_channels (int): Number of channels produced by the convolution. | |
kernel_size(int, tuple): Size of the convolving kernel. | |
stride(int, tuple): Stride of the convolution. Default: 1. | |
padding (int or tuple): Zero-padding added to both sides of the input. | |
Default: 0. | |
dilation (int or tuple): Spacing between kernel elements. Default: 1. | |
groups (int): Number of blocked connections from input. | |
channels to output channels. Default: 1. | |
deform_groups (int): Number of deformable group partitions. | |
bias (bool): If True, adds a learnable bias to the output. | |
Default: False. | |
im2col_step (int): Number of samples processed by im2col_cuda_kernel | |
per call. It will work when ``batch_size`` > ``im2col_step``, but | |
``batch_size`` must be divisible by ``im2col_step``. Default: 32. | |
`New in version 1.3.17.` | |
""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, ...]], | |
stride: Union[int, Tuple[int, ...]] = 1, | |
padding: Union[int, Tuple[int, ...]] = 0, | |
dilation: Union[int, Tuple[int, ...]] = 1, | |
groups: int = 1, | |
deform_groups: int = 1, | |
bias: bool = False, | |
im2col_step: int = 32) -> None: | |
super(DeformConv2d, self).__init__() | |
assert not bias, \ | |
f'bias={bias} is not supported in DeformConv2d.' | |
assert in_channels % groups == 0, \ | |
f'in_channels {in_channels} cannot be divisible by groups {groups}' | |
assert out_channels % groups == 0, \ | |
f'out_channels {out_channels} cannot be divisible by groups \ | |
{groups}' | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = _pair(stride) | |
self.padding = _pair(padding) | |
self.dilation = _pair(dilation) | |
self.groups = groups | |
self.deform_groups = deform_groups | |
self.im2col_step = im2col_step | |
# enable compatibility with nn.Conv2d | |
self.transposed = False | |
self.output_padding = _single(0) | |
# only weight, no bias | |
self.weight = nn.Parameter( | |
torch.Tensor(out_channels, in_channels // self.groups, | |
*self.kernel_size)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
# switch the initialization of `self.weight` to the standard kaiming | |
# method described in `Delving deep into rectifiers: Surpassing | |
# human-level performance on ImageNet classification` - He, K. et al. | |
# (2015), using a uniform distribution | |
nn.init.kaiming_uniform_(self.weight, nonlinearity='relu') | |
def forward(self, x: Tensor, offset: Tensor) -> Tensor: | |
"""Deformable Convolutional forward function. | |
Args: | |
x (Tensor): Input feature, shape (B, C_in, H_in, W_in) | |
offset (Tensor): Offset for deformable convolution, shape | |
(B, deform_groups*kernel_size[0]*kernel_size[1]*2, | |
H_out, W_out), H_out, W_out are equal to the output's. | |
An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. | |
The spatial arrangement is like: | |
.. code:: text | |
(x0, y0) (x1, y1) (x2, y2) | |
(x3, y3) (x4, y4) (x5, y5) | |
(x6, y6) (x7, y7) (x8, y8) | |
Returns: | |
Tensor: Output of the layer. | |
""" | |
# To fix an assert error in deform_conv_cuda.cpp:128 | |
# input image is smaller than kernel | |
input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) < | |
self.kernel_size[1]) | |
if input_pad: | |
pad_h = max(self.kernel_size[0] - x.size(2), 0) | |
pad_w = max(self.kernel_size[1] - x.size(3), 0) | |
x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() | |
offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0) | |
offset = offset.contiguous() | |
out = deform_conv2d(x, offset, self.weight, self.stride, self.padding, | |
self.dilation, self.groups, self.deform_groups, | |
False, self.im2col_step) | |
if input_pad: | |
out = out[:, :, :out.size(2) - pad_h, :out.size(3) - | |
pad_w].contiguous() | |
return out | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(in_channels={self.in_channels},\n' | |
s += f'out_channels={self.out_channels},\n' | |
s += f'kernel_size={self.kernel_size},\n' | |
s += f'stride={self.stride},\n' | |
s += f'padding={self.padding},\n' | |
s += f'dilation={self.dilation},\n' | |
s += f'groups={self.groups},\n' | |
s += f'deform_groups={self.deform_groups},\n' | |
# bias is not supported in DeformConv2d. | |
s += 'bias=False)' | |
return s | |
class DeformConv2dPack(DeformConv2d): | |
"""A Deformable Conv Encapsulation that acts as normal Conv layers. | |
The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. | |
The spatial arrangement is like: | |
.. code:: text | |
(x0, y0) (x1, y1) (x2, y2) | |
(x3, y3) (x4, y4) (x5, y5) | |
(x6, y6) (x7, y7) (x8, y8) | |
Args: | |
in_channels (int): Same as nn.Conv2d. | |
out_channels (int): Same as nn.Conv2d. | |
kernel_size (int or tuple[int]): Same as nn.Conv2d. | |
stride (int or tuple[int]): Same as nn.Conv2d. | |
padding (int or tuple[int]): Same as nn.Conv2d. | |
dilation (int or tuple[int]): Same as nn.Conv2d. | |
groups (int): Same as nn.Conv2d. | |
bias (bool or str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise | |
False. | |
""" | |
_version = 2 | |
def __init__(self, *args, **kwargs): | |
super(DeformConv2dPack, self).__init__(*args, **kwargs) | |
self.conv_offset = nn.Conv2d( | |
self.in_channels, | |
self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1], | |
kernel_size=self.kernel_size, | |
stride=_pair(self.stride), | |
padding=_pair(self.padding), | |
dilation=_pair(self.dilation), | |
bias=True) | |
self.init_offset() | |
def init_offset(self): | |
self.conv_offset.weight.data.zero_() | |
self.conv_offset.bias.data.zero_() | |
def forward(self, x): | |
offset = self.conv_offset(x) | |
return deform_conv2d(x, offset, self.weight, self.stride, self.padding, | |
self.dilation, self.groups, self.deform_groups, | |
False, self.im2col_step) | |
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | |
missing_keys, unexpected_keys, error_msgs): | |
version = local_metadata.get('version', None) | |
if version is None or version < 2: | |
# the key is different in early versions | |
# In version < 2, DeformConvPack loads previous benchmark models. | |
if (prefix + 'conv_offset.weight' not in state_dict | |
and prefix[:-1] + '_offset.weight' in state_dict): | |
state_dict[prefix + 'conv_offset.weight'] = state_dict.pop( | |
prefix[:-1] + '_offset.weight') | |
if (prefix + 'conv_offset.bias' not in state_dict | |
and prefix[:-1] + '_offset.bias' in state_dict): | |
state_dict[prefix + | |
'conv_offset.bias'] = state_dict.pop(prefix[:-1] + | |
'_offset.bias') | |
if version is not None and version > 1: | |
print_log( | |
f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to ' | |
'version 2.', | |
logger='root') | |
super()._load_from_state_dict(state_dict, prefix, local_metadata, | |
strict, missing_keys, unexpected_keys, | |
error_msgs) | |