Spaces:
Paused
Paused
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa | |
from os import path as osp | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.modules.utils import _pair | |
from torch.onnx.operators import shape_as_tensor | |
def bilinear_grid_sample(im, grid, align_corners=False): | |
"""Given an input and a flow-field grid, computes the output using input | |
values and pixel locations from grid. Supported only bilinear interpolation | |
method to sample the input pixels. | |
Args: | |
im (torch.Tensor): Input feature map, shape (N, C, H, W) | |
grid (torch.Tensor): Point coordinates, shape (N, Hg, Wg, 2) | |
align_corners {bool}: If set to True, the extrema (-1 and 1) are | |
considered as referring to the center points of the input’s | |
corner pixels. If set to False, they are instead considered as | |
referring to the corner points of the input’s corner pixels, | |
making the sampling more resolution agnostic. | |
Returns: | |
torch.Tensor: A tensor with sampled points, shape (N, C, Hg, Wg) | |
""" | |
n, c, h, w = im.shape | |
gn, gh, gw, _ = grid.shape | |
assert n == gn | |
x = grid[:, :, :, 0] | |
y = grid[:, :, :, 1] | |
if align_corners: | |
x = ((x + 1) / 2) * (w - 1) | |
y = ((y + 1) / 2) * (h - 1) | |
else: | |
x = ((x + 1) * w - 1) / 2 | |
y = ((y + 1) * h - 1) / 2 | |
x = x.view(n, -1) | |
y = y.view(n, -1) | |
x0 = torch.floor(x).long() | |
y0 = torch.floor(y).long() | |
x1 = x0 + 1 | |
y1 = y0 + 1 | |
wa = ((x1 - x) * (y1 - y)).unsqueeze(1) | |
wb = ((x1 - x) * (y - y0)).unsqueeze(1) | |
wc = ((x - x0) * (y1 - y)).unsqueeze(1) | |
wd = ((x - x0) * (y - y0)).unsqueeze(1) | |
# Apply default for grid_sample function zero padding | |
im_padded = F.pad(im, pad=[1, 1, 1, 1], mode='constant', value=0) | |
padded_h = h + 2 | |
padded_w = w + 2 | |
# save points positions after padding | |
x0, x1, y0, y1 = x0 + 1, x1 + 1, y0 + 1, y1 + 1 | |
# Clip coordinates to padded image size | |
x0 = torch.where(x0 < 0, torch.tensor(0), x0) | |
x0 = torch.where(x0 > padded_w - 1, torch.tensor(padded_w - 1), x0) | |
x1 = torch.where(x1 < 0, torch.tensor(0), x1) | |
x1 = torch.where(x1 > padded_w - 1, torch.tensor(padded_w - 1), x1) | |
y0 = torch.where(y0 < 0, torch.tensor(0), y0) | |
y0 = torch.where(y0 > padded_h - 1, torch.tensor(padded_h - 1), y0) | |
y1 = torch.where(y1 < 0, torch.tensor(0), y1) | |
y1 = torch.where(y1 > padded_h - 1, torch.tensor(padded_h - 1), y1) | |
im_padded = im_padded.view(n, c, -1) | |
x0_y0 = (x0 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) | |
x0_y1 = (x0 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) | |
x1_y0 = (x1 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) | |
x1_y1 = (x1 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) | |
Ia = torch.gather(im_padded, 2, x0_y0) | |
Ib = torch.gather(im_padded, 2, x0_y1) | |
Ic = torch.gather(im_padded, 2, x1_y0) | |
Id = torch.gather(im_padded, 2, x1_y1) | |
return (Ia * wa + Ib * wb + Ic * wc + Id * wd).reshape(n, c, gh, gw) | |
def is_in_onnx_export_without_custom_ops(): | |
from annotator.uniformer.mmcv.ops import get_onnxruntime_op_path | |
ort_custom_op_path = get_onnxruntime_op_path() | |
return torch.onnx.is_in_onnx_export( | |
) and not osp.exists(ort_custom_op_path) | |
def normalize(grid): | |
"""Normalize input grid from [-1, 1] to [0, 1] | |
Args: | |
grid (Tensor): The grid to be normalize, range [-1, 1]. | |
Returns: | |
Tensor: Normalized grid, range [0, 1]. | |
""" | |
return (grid + 1.0) / 2.0 | |
def denormalize(grid): | |
"""Denormalize input grid from range [0, 1] to [-1, 1] | |
Args: | |
grid (Tensor): The grid to be denormalize, range [0, 1]. | |
Returns: | |
Tensor: Denormalized grid, range [-1, 1]. | |
""" | |
return grid * 2.0 - 1.0 | |
def generate_grid(num_grid, size, device): | |
"""Generate regular square grid of points in [0, 1] x [0, 1] coordinate | |
space. | |
Args: | |
num_grid (int): The number of grids to sample, one for each region. | |
size (tuple(int, int)): The side size of the regular grid. | |
device (torch.device): Desired device of returned tensor. | |
Returns: | |
(torch.Tensor): A tensor of shape (num_grid, size[0]*size[1], 2) that | |
contains coordinates for the regular grids. | |
""" | |
affine_trans = torch.tensor([[[1., 0., 0.], [0., 1., 0.]]], device=device) | |
grid = F.affine_grid( | |
affine_trans, torch.Size((1, 1, *size)), align_corners=False) | |
grid = normalize(grid) | |
return grid.view(1, -1, 2).expand(num_grid, -1, -1) | |
def rel_roi_point_to_abs_img_point(rois, rel_roi_points): | |
"""Convert roi based relative point coordinates to image based absolute | |
point coordinates. | |
Args: | |
rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) | |
rel_roi_points (Tensor): Point coordinates inside RoI, relative to | |
RoI, location, range (0, 1), shape (N, P, 2) | |
Returns: | |
Tensor: Image based absolute point coordinates, shape (N, P, 2) | |
""" | |
with torch.no_grad(): | |
assert rel_roi_points.size(0) == rois.size(0) | |
assert rois.dim() == 2 | |
assert rel_roi_points.dim() == 3 | |
assert rel_roi_points.size(2) == 2 | |
# remove batch idx | |
if rois.size(1) == 5: | |
rois = rois[:, 1:] | |
abs_img_points = rel_roi_points.clone() | |
# To avoid an error during exporting to onnx use independent | |
# variables instead inplace computation | |
xs = abs_img_points[:, :, 0] * (rois[:, None, 2] - rois[:, None, 0]) | |
ys = abs_img_points[:, :, 1] * (rois[:, None, 3] - rois[:, None, 1]) | |
xs += rois[:, None, 0] | |
ys += rois[:, None, 1] | |
abs_img_points = torch.stack([xs, ys], dim=2) | |
return abs_img_points | |
def get_shape_from_feature_map(x): | |
"""Get spatial resolution of input feature map considering exporting to | |
onnx mode. | |
Args: | |
x (torch.Tensor): Input tensor, shape (N, C, H, W) | |
Returns: | |
torch.Tensor: Spatial resolution (width, height), shape (1, 1, 2) | |
""" | |
if torch.onnx.is_in_onnx_export(): | |
img_shape = shape_as_tensor(x)[2:].flip(0).view(1, 1, 2).to( | |
x.device).float() | |
else: | |
img_shape = torch.tensor(x.shape[2:]).flip(0).view(1, 1, 2).to( | |
x.device).float() | |
return img_shape | |
def abs_img_point_to_rel_img_point(abs_img_points, img, spatial_scale=1.): | |
"""Convert image based absolute point coordinates to image based relative | |
coordinates for sampling. | |
Args: | |
abs_img_points (Tensor): Image based absolute point coordinates, | |
shape (N, P, 2) | |
img (tuple/Tensor): (height, width) of image or feature map. | |
spatial_scale (float): Scale points by this factor. Default: 1. | |
Returns: | |
Tensor: Image based relative point coordinates for sampling, | |
shape (N, P, 2) | |
""" | |
assert (isinstance(img, tuple) and len(img) == 2) or \ | |
(isinstance(img, torch.Tensor) and len(img.shape) == 4) | |
if isinstance(img, tuple): | |
h, w = img | |
scale = torch.tensor([w, h], | |
dtype=torch.float, | |
device=abs_img_points.device) | |
scale = scale.view(1, 1, 2) | |
else: | |
scale = get_shape_from_feature_map(img) | |
return abs_img_points / scale * spatial_scale | |
def rel_roi_point_to_rel_img_point(rois, | |
rel_roi_points, | |
img, | |
spatial_scale=1.): | |
"""Convert roi based relative point coordinates to image based absolute | |
point coordinates. | |
Args: | |
rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) | |
rel_roi_points (Tensor): Point coordinates inside RoI, relative to | |
RoI, location, range (0, 1), shape (N, P, 2) | |
img (tuple/Tensor): (height, width) of image or feature map. | |
spatial_scale (float): Scale points by this factor. Default: 1. | |
Returns: | |
Tensor: Image based relative point coordinates for sampling, | |
shape (N, P, 2) | |
""" | |
abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points) | |
rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img, | |
spatial_scale) | |
return rel_img_point | |
def point_sample(input, points, align_corners=False, **kwargs): | |
"""A wrapper around :func:`grid_sample` to support 3D point_coords tensors | |
Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to | |
lie inside ``[0, 1] x [0, 1]`` square. | |
Args: | |
input (Tensor): Feature map, shape (N, C, H, W). | |
points (Tensor): Image based absolute point coordinates (normalized), | |
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). | |
align_corners (bool): Whether align_corners. Default: False | |
Returns: | |
Tensor: Features of `point` on `input`, shape (N, C, P) or | |
(N, C, Hgrid, Wgrid). | |
""" | |
add_dim = False | |
if points.dim() == 3: | |
add_dim = True | |
points = points.unsqueeze(2) | |
if is_in_onnx_export_without_custom_ops(): | |
# If custom ops for onnx runtime not compiled use python | |
# implementation of grid_sample function to make onnx graph | |
# with supported nodes | |
output = bilinear_grid_sample( | |
input, denormalize(points), align_corners=align_corners) | |
else: | |
output = F.grid_sample( | |
input, denormalize(points), align_corners=align_corners, **kwargs) | |
if add_dim: | |
output = output.squeeze(3) | |
return output | |
class SimpleRoIAlign(nn.Module): | |
def __init__(self, output_size, spatial_scale, aligned=True): | |
"""Simple RoI align in PointRend, faster than standard RoIAlign. | |
Args: | |
output_size (tuple[int]): h, w | |
spatial_scale (float): scale the input boxes by this number | |
aligned (bool): if False, use the legacy implementation in | |
MMDetection, align_corners=True will be used in F.grid_sample. | |
If True, align the results more perfectly. | |
""" | |
super(SimpleRoIAlign, self).__init__() | |
self.output_size = _pair(output_size) | |
self.spatial_scale = float(spatial_scale) | |
# to be consistent with other RoI ops | |
self.use_torchvision = False | |
self.aligned = aligned | |
def forward(self, features, rois): | |
num_imgs = features.size(0) | |
num_rois = rois.size(0) | |
rel_roi_points = generate_grid( | |
num_rois, self.output_size, device=rois.device) | |
if torch.onnx.is_in_onnx_export(): | |
rel_img_points = rel_roi_point_to_rel_img_point( | |
rois, rel_roi_points, features, self.spatial_scale) | |
rel_img_points = rel_img_points.reshape(num_imgs, -1, | |
*rel_img_points.shape[1:]) | |
point_feats = point_sample( | |
features, rel_img_points, align_corners=not self.aligned) | |
point_feats = point_feats.transpose(1, 2) | |
else: | |
point_feats = [] | |
for batch_ind in range(num_imgs): | |
# unravel batch dim | |
feat = features[batch_ind].unsqueeze(0) | |
inds = (rois[:, 0].long() == batch_ind) | |
if inds.any(): | |
rel_img_points = rel_roi_point_to_rel_img_point( | |
rois[inds], rel_roi_points[inds], feat, | |
self.spatial_scale).unsqueeze(0) | |
point_feat = point_sample( | |
feat, rel_img_points, align_corners=not self.aligned) | |
point_feat = point_feat.squeeze(0).transpose(0, 1) | |
point_feats.append(point_feat) | |
point_feats = torch.cat(point_feats, dim=0) | |
channels = features.size(1) | |
roi_feats = point_feats.reshape(num_rois, channels, *self.output_size) | |
return roi_feats | |
def __repr__(self): | |
format_str = self.__class__.__name__ | |
format_str += '(output_size={}, spatial_scale={}'.format( | |
self.output_size, self.spatial_scale) | |
return format_str | |