Spaces:
Paused
Paused
import collections | |
from annotator.uniformer.mmcv.utils import build_from_cfg | |
from ..builder import PIPELINES | |
class Compose(object): | |
"""Compose multiple transforms sequentially. | |
Args: | |
transforms (Sequence[dict | callable]): Sequence of transform object or | |
config dict to be composed. | |
""" | |
def __init__(self, transforms): | |
assert isinstance(transforms, collections.abc.Sequence) | |
self.transforms = [] | |
for transform in transforms: | |
if isinstance(transform, dict): | |
transform = build_from_cfg(transform, PIPELINES) | |
self.transforms.append(transform) | |
elif callable(transform): | |
self.transforms.append(transform) | |
else: | |
raise TypeError('transform must be callable or a dict') | |
def __call__(self, data): | |
"""Call function to apply transforms sequentially. | |
Args: | |
data (dict): A result dict contains the data to transform. | |
Returns: | |
dict: Transformed data. | |
""" | |
for t in self.transforms: | |
data = t(data) | |
if data is None: | |
return None | |
return data | |
def __repr__(self): | |
format_string = self.__class__.__name__ + '(' | |
for t in self.transforms: | |
format_string += '\n' | |
format_string += f' {t}' | |
format_string += '\n)' | |
return format_string | |